2021-2022学年度沪科版九年级数学下册第24章圆定向训练试题(名师精选).docx
《2021-2022学年度沪科版九年级数学下册第24章圆定向训练试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度沪科版九年级数学下册第24章圆定向训练试题(名师精选).docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,CAB=64,将ABC在平面内绕点A旋转到ABC的位置,使CCAB,则旋转角的度数为( )A64B5
2、2C42D362、下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD3、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,则阴影部分的面积为( )ABCD4、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A1cmB2cmC3cmD4cm5、如图,PA,PB是O的切线,A,B为切点,PA4,则PB的长度为( )A3B4C5D66、如图,DC是O的直径,弦ABCD于M,则下列结论不一定成立的是()AAM=BMBCM=DMCD7、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cmA3B6C12D188、
3、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD9、如图,在中,将绕点C逆时针旋转90得到,则的度数为( )A105B120C135D15010、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )A它们的开口方向相同B它们的对称轴相同C它们的变化情況相同D它们的顶点坐标相同第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,已知ABC90,BAC30,BC1,如图所示,将ABC绕点A按逆时针方向旋转90后得到ABC则图中阴影部分的面积为_
4、2、如图,已知,在中,将绕点A逆时针旋转一个角至位置,连接BD,CE交于点F(I)求证:;(2)若四边形ABFE为菱形,求的值;(3)在(2)的条件下,若,直接写出CF的值3、如图,四边形ABCD是O的内接四边形,O的半径为2,D110,则的长为_4、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为_(结果保留)5、若扇形的圆心角为60,半径为2,则该扇形的弧长是_(结果保留)三、解答题(5小题,每小题10分,共计50分)1、如图,AB为O的切线,B为切点,过点B作BCOA,垂足为点E,交O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC(1)求
5、证:AC为O的切线;(2)若O半径为2,OD4求线段AD的长2、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H(1)当直线l在如图的位置时请直接写出与之间的数量关系_请直接写出线段BH,EH,CH之间的数量关系_(2)当直线l在如图的位置时,请写出线段BH,EH,CH之间的数量关系并证明;(3)已知,在直线l旋转过程中当时,请直接写出EH的长3、如图,在ABC是O的内接三角形,B45,连接OC,过点A作ADOC,交BC的延长线于D(1)求证:AD是O的切线;(2)若O的半径为2,OCB75,求ABC边AB的长4、如图,在平面直角坐标系中
6、,ABC三个顶点的坐标分别为A(0,3),B(3,5),C(4,1)(1)把ABC向右平移3个单位得A1B1C1,请画出A1B1C1并写出点A1的坐标;(2)把ABC绕原点O旋转180得到A2B2C2,请画出A2B2C25、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关系,并证明-参考答案-一、单选题1、B【分析】先根据平行线的性质得ACC=CAB=64,再根据旋转的性质得CAC等于旋转角,AC=AC,则利用等腰三角形的性质得ACC=ACC=64,然后根据三
7、角形内角和定理可计算出CAC的度数,从而得到旋转角的度数【详解】解:CCAB,ACC=CAB=64ABC在平面内绕点A旋转到ABC的位置,CAC等于旋转角,AC=AC,ACC=ACC=64,CAC=180-ACC-ACC=180-264=52,旋转角为52故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等2、B【分析】根据“把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由
8、此问题可求解【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键3、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案【详解】解:根据题意,如图:AB是的直径,OD是半径,AE=CE,阴影CED的面积等于AED的面积,;故选:B【点睛】本题考查了求扇形的面积,
9、垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算4、B【分析】连接OB,过点O作OCAB于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可【详解】解:连接OB,过点O作OCAB于点D,交O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC=5cm,在RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键5、B【分析】由切线的性质可推出,再根据直角三角形全等的判定条件
10、“HL”,即可证明,即得出【详解】PA,PB是O的切线,A,B为切点,在和中,故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质熟练掌握切线的性质是解答本题的关键6、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得【详解】解:弦ABCD,CD过圆心O,AM=BM,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理7、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算【详解】解:它的侧面展开图
11、的面积2236(cm2)故选:B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长8、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转
12、后能与自身重合.9、B【分析】由题意易得,然后根据三角形外角的性质可求解【详解】解:由旋转的性质可得:,;故选B【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键10、B【分析】根据旋转的性质及抛物线的性质即可确定答案【详解】抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,2),所以在四个选项中,只有B选项符合题意故选:B【点睛】本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键二、填空题1、【分析】利用勾股定理求出AC及AB的长,根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年度 沪科版 九年级 数学 下册 24 定向 训练 试题 名师 精选
限制150内