2021-2022学年度强化训练北师大版九年级数学下册第三章-圆月考试题(含解析).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2021-2022学年度强化训练北师大版九年级数学下册第三章-圆月考试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版九年级数学下册第三章-圆月考试题(含解析).docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第三章 圆月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、矩形ABCD中,AB8,BC4,点P在边AB上,且AP3,如果P是以点P为圆心,PD为半径的圆,那么下列判断正确的是()
2、A点B、C均在P内B点B在P上、点C在P内C点B、C均在P外D点B在P上、点C在P外2、如图,AB是O的直径,弦CDAB于E,若OA2,B60,则CD的长为( )AB2C2D43、如图,点A,B,C均在上,当时,的度数是( )A65B60C55D504、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A6,3B6,3C3,6D6,35、如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A3B4CD6、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )A45B60C90D1207、小明设计了如图所示的树型图案,
3、它是由4个正方形、8个等边三角形和5个扇形组成,其中正方形的边长、等边三角形的边长和扇形的半径均为3,则图中扇形的弧长总和为()A8BCD128、到三角形三个顶点距离相等的点是此三角形()A三条角平分线的交点B三条中线的交点C三条高的交点D三边中垂线的交点9、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20B25C30D4010、已知O的半径为5,若点P在O内,则OP的长可以是()A4B5C6D7第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若扇形的圆心角为60,半径为2,则该扇形的弧长是_(结果保留)2、已知O的直径为6cm,且点P在O
4、上,则线段PO=_ .3、如图,点A,B,C在O上,四边形OABC是平行四边形,若对角线AC2,则的长为 _4、如图,PA、PB是O的切线,A、B为切点,OAB30则APB=_度;5、如图,AB为的直径,弦CDAB于点H,若AB=10,CD=8,则OH的长为_ 三、解答题(5小题,每小题10分,共计50分)1、如图,已知正方形 ABCD 的边长为4,以点 A 为圆心,1为半径作圆,点 E 是A 上的一动点,点 E 绕点 D 按逆时针方向转转 90,得到点 F,接 AF(1)求CF长;(2)当A、E、F三点共线时,求EF长;(3) AF的最大值是_2、如图,AC是O的弦,过点O作OPOC交AC于
5、点P,在OP的延长线上取点B,使得BABP(1)求证:AB是O的切线;(2)若O的半径为4,PC,求线段AB的长3、如图,四边形ABCD为平行四边形,以AD为直径的O交AB于点E,连接DE,DA2,DE,DC5过点E作直线l过点C作CHl,垂足为H(1)若lAD,且l与O交于另一点F,连接DF,求DF的长;(2)连接BH,当直线l绕点E旋转时,求BH的最大值;(3)过点A作AMl,垂足为M,当直线l绕点E旋转时,求CH4AM的最大值4、如图,AB为的直径,点C在上,连接AC,BC,过点O作于点D,过点C作的切线交OD的延长线于点E(1)求证:;(2)连接AD若,求AD的长5、如图,四边形ABC
6、D内接于O,OC2,AC2 (1)求点O到AC的距离;(2)求ADC的度数-参考答案-一、单选题1、D【分析】如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案【详解】解:如图所示,连接DP,CP,四边形ABCD是矩形,A=B=90,AP=3,AB=8,BP=AB-AP=5,PB=PD,点C在圆P外,点B在圆P上,故选D【点睛】本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键2、B【分析】先证明是等边三角形,再证明求解从而可得答案.【详解】解: 是等
7、边三角形, 故选B【点睛】本题考查的是等边三角形的判定与性质,垂径定理的应用,锐角三角函数的应用,证明是等边三角形是解本题的关键.3、C【分析】先由OB=OC,得到OCB=OBC=35,从而可得BOC=180-OCB-OBC=110,再由圆周角定理即可得到答案【详解】解:OB=OC,OCB=OBC=35,BOC=180-OCB-OBC=110,故选C【点睛】本题主要考查了圆周角定理,三角形内角和定理,等腰三角形的性质,熟知圆周角定理是解题的关键4、B【分析】如图1,O是正六边形的外接圆,连接OA,OB,求出AOB=60,即可证明OAB是等边三角形,得到OA=AB=6;如图2,O1是正六边形的内
8、切圆,连接O1A,O1B,过点O1作O1MAB于M,先求出AO1B60,然后根据等边三角形的性质和勾股定理求解即可【详解】解:(1)如图1,O是正六边形的外接圆,连接OA,OB,六边形ABCDEF是正六边形,AOB=3606=60,OA=OB,OAB是等边三角形,OA=AB=6;(2)如图2,O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1MAB于M,六边形ABCDEF是正六边形,AO1B60,O1A= O1B,O1AB是等边三角形,O1A= AB=6,O1MAB,O1MA90,AMBM,AB6,AMBM,O1M故选B【点睛】本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定
9、理,熟知正多边形与圆的知识是解题的关键5、D【分析】作OMAB于M,ONCD于N,根据垂径定理、勾股定理得:OM=ON=4,再根据四边形MONP是正方形,故可求解【详解】作OMAB于M,ONCD于N,连接OB,OD,OB=5,BM= ,OM=AB=CD=8,ON=OM=4,弦AB、CD互相垂直,DPB=90,OMAB于M,ONCD于N,OMP=ONP=90四边形MONP是矩形,OM=ON,四边形MONP是正方形,OP=3故选C【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线6、B【分析】设ADC=,ABC=,由菱形的性质与圆周角定理可得 ,求出即可解决问题【详解】解:设
10、ADC=,ABC=; 四边形ABCO是菱形, ABC=AOC; ADC=; 四边形为圆的内接四边形,+=180, , 解得:=120,=60,则ADC=60, 故选:B【点睛】该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.7、C【分析】如图(见解析),先分别求出扇形、和的圆心角的度数,再利用弧长公式即可得【详解】解:如图,扇形、和的圆心角的度数均为,扇形和的圆心角的度数均为,则图中扇形的弧长总和,故选:C【点睛】本题考查了求弧长,熟记弧长公式(,其中为弧长,为圆心角的度数,为扇形的半径)是解题关
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年度 强化 训练 北师大 九年级 数学 下册 第三 圆月 考试题 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内