2021-2022学年最新北师大版九年级数学下册第三章-圆综合练习练习题(含详解).docx
《2021-2022学年最新北师大版九年级数学下册第三章-圆综合练习练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新北师大版九年级数学下册第三章-圆综合练习练习题(含详解).docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第三章 圆综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20B25C30D402、某村东西向的废弃
2、小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20mC(20 - 20)mD(40 - 20)m3、如图,ABC内接于O,BAC30,BC6,则O的直径等于()A10B6C6D124、如图,正的边长为,边长为的正的顶点R与点A重合,点P,Q分别在AC,AB上,将沿着边AB,BC,CA
3、连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为( )ABCD5、计算半径为1,圆心角为的扇形面积为( )ABCD6、已知O的半径等于5,圆心O到直线l的距离为6,那么直线l与O的公共点的个数是( )A0B1C2D无法确定7、下列说法正确的是( )A相等的圆心角所对的弧相等,所对的弦相等B平分弦的直径垂直于弦,并且平分弦所对的弧C等弧所对的圆心角相等,所对的弦相等D圆是轴对称图形,其对称轴是任意一条直径8、如图,AB 为O 的直径,弦 CDAB,垂足为点 E,若 O的半径为5,CD=8,则AE的长为( )A3B2C1D9、如图,已知AB是O的直径,CD是弦,若BCD36
4、,则ABD等于()A54B56C64D6610、下列图形中,ABC与DEF不一定相似的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正六边形ABCDEF内接于O,若O的周长为8,则正六边形的边长为_ 2、是的内接正六边形一边,点是优弧上的一点(点不与点,重合)且,与交于点,则的度数为_3、如图,它是在纸板上剪下的一个半圆和一个圆形,它们恰好能组成一个圆锥模型已知半圆的半径为1,则该圆锥的侧面积是 _4、一条弧所对的圆心角为,弧长等于,则这条弧的半径为_5、如图,已知圆锥的母线AB长为40 cm,底面半径OB长为10 cm,若将绳子一端固定在点B,
5、绕圆锥侧面一周,另一端与点B重合,则这根绳子的最短长度是_三、解答题(5小题,每小题10分,共计50分)1、如图,AB是O的直径,弦CDAB于点E,AM是ACD的外角DAF的平分线(1)求证:AM是O的切线;(2)连接CO并延长交AM于点N,若O的半径为2,ANC = 30,求CD的长2、如图,在平面直角坐标系中,直线y3x3与x轴交于点A,与y轴交于点C抛物线经过A,C两点,且与x轴交于另一点B(点B在点A右侧)(1)求抛物线的解析式及点B坐标;(2)试探究的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E求面积 的最大值
6、,并求出此时M点的坐标3、问题背景如图(1),ABC为等腰直角三角形,BAC90,直线l绕着点A顺时针旋转,过B,C两点分别向直线l作垂线BD,CE,垂足为D,E,此时ABD可以由CAE通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小(取最小旋转角度)尝试应用如图(2),ABC为等边三角形,直线l绕着点A顺时针旋转,D、E为直线l上两点,BDAAEC60ABD可以由CAE通过旋转变换得到吗?若可以,请指出旋转中心O的位置并说明理由;拓展创新如图(3)在问题背景的条件下,若AB2,连接DC,直接写出CD的长的取值范围4、下面是小石设计的“过三角形一个顶点作其对边的平行线”的尺规作图过程已
7、知:如图,求作:直线BD,使得作法:如图,分别作线段AC,BC的垂直平分线,两直线交于点O;以点O为圆心,OA长为半径作圆;以点A为圆心,BC长为半径作孤,交于点D;作直线BD所以直线BD就是所求作的直线根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接AD,点A,B,C,D在上,_(_)(填推理的依据)5、尝试:如图,中,将绕点A按逆时针方向旋转一定角度得到,点B、C的对应点分别为、,连接、,直接写出图中的一对相似三角形_;拓展:如图,在中,将绕点A按逆时针方向旋转一定角度得到,点B、C的对应点分别为、,连接、,若,求的长;应用:如图,
8、在中,将绕点A按逆时针方向旋转一周,在旋转过程中,当点B的对应点恰好落在的边所在的直线上时,直接写出此时点C的运动路径长-参考答案-一、单选题1、B【分析】连接OA,如图,根据切线的性质得PAO=90,再利用互余计算出AOP=50,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90,P=40,AOP=50,OA=OB,B=OAB,AOP=B+OAB,B=AOP=50=25故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系2、D【分析】根据人工湖面积尽量小
9、,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键3、D【分析】连接OB,OC,根据圆周角定理求出BOC的度数,再由OB=OC判断出OBC是等边三角形,由此可得出结论【详解】解:连接OB,OC,BA
10、C=30,BOC=60OB=OC,BC=6,OBC是等边三角形,OB=BC=6O的直径等于12故选:D【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键4、B【分析】从图中可以看出在AB边,翻转的第一次是一个120度的圆心角,半径是1,第二次是以点P为圆心,所以没有路程,同理在AC和BC上也是相同的情况,由此求解即可【详解】解:从图中可以看出在AB边,翻转的第一次是一个120度的圆心角,半径是1,所以弧长=,第二次是以点P为圆心,所以没有路程,在BC边上,第一次,第二次同样没有路程,AC边上也是如此,点P运动路径的长为3=2故选:B【点睛】本题主要考查了等边三角
11、形的性质,求弧长,解题的关键在于能够根据题意得到P点的运动轨迹5、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键6、A【分析】圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案【详解】解:O的半径等于为8,圆心O到直线l的距离为为6,直线l与相离,直线l与O的公共点的个数为0,故选A【点睛】本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键
12、7、C【分析】根据圆心角、弧、弦的关系对AC进行判断;根据垂径定理的推论对B进行判断;根据对称轴的定义对D进行判断【详解】解:A、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以本选项错误;B、平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以本选项错误;C、等弧所对的圆心角相等,所对的弦相等,所以本选项正确;D、圆是轴对称图形,其对称轴是任意一条直径所在的直线,所以本选项错误;故选:C【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等也考查了垂径定理8、B【分析】连接OC,由垂径定理,得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 最新 北师大 九年级 数学 下册 第三 综合 练习 练习题 详解
限制150内