【课堂新坐标】2021届高考数学二轮复习 考点50 离散型随机变量及其分布列、离散型随机变量的均值与方差 理.doc
《【课堂新坐标】2021届高考数学二轮复习 考点50 离散型随机变量及其分布列、离散型随机变量的均值与方差 理.doc》由会员分享,可在线阅读,更多相关《【课堂新坐标】2021届高考数学二轮复习 考点50 离散型随机变量及其分布列、离散型随机变量的均值与方差 理.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考点50 离散型随机变量及其分布列、离散型随机变量的均值与方差一、选择题1. (2013广东高考理科4)已知离散型随机变量X的分布列为X123p则X的数学期望E(x)=( )A. B. 2C. D3【解题指南】本题考查离散型随机变量的期望公式,可以直接代入计算.【解析】选A. .2. (2013湖北高考理科9)如图,将一个各面都凃了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的油漆面数为X,则X的均E(X)=( )A. B. C. D【解题指南】先求分布列,再求E(X)。【解析】选B. E(X)=二、填空题3.(2013上海高考理科T10)设非零常数
2、d是等差数列的公差,随机变量等可能地取值,则方差【解析】,【答案】.4.(2013上海高考文科T6)某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别是75、80,则这次考试该年级学生平均分数为 .【解析】 【答案】 78.三、解答题5. (2013四川高考理科18) 某算法的程序框图如图所示,其中输入的变量x在1,2,3,24这24个整数中等可能随机产生()分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);()甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数以下是甲、乙
3、所作频数统计表的部分数据甲的频数统计表(部分)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数30146102 1001 027376697乙的频数统计表(部分)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数30121172 1001 051696353当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.()将按程序框图正确编写的程序运行3次,求输出y的值为2的次数的分布列及数学期望.【解题指南】求解本题的关键是理解题意,并且弄清
4、框图的功能,找到随机变量可能的取值,列出分布列再求数学期望.【解析】()变量x是在1,2,3,24这24个整数中随机产生的一个数,共有24种可能.当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出的y=1,故P1=;当x从2,4,8,10,14,16,20,22这8个数中产生时,输出的y=2,故P2=;当x从6,12,18,24这4个数中产生时,输出的y=3,故P3=.所以输出y的值为1的概率是,输出y的值为2的概率是,输出y的值为3的概率是.() 当n=2100时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下:输出y的值为1的频率输出y
5、的值为2的频率输出y的值为1的频率甲乙比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大. ()随机变量的所有可能取值为0,1,2,3.P(=0)=C30()0()3=,P(=1)=C31()1()2=,P(=2)=C32()2()1=,P(=3)=C33()3()0=.故的分布列为0123P所以,E=0+1+2+3=1,即的数学期望为1.6. (2013四川高考文科18)某算法的程序框图如图所示,其中输入的变量在这个整数中等可能随机产生。()分别求出按程序框图正确编程运行时输出的值为的概率;()甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值
6、为i(i=1,2,3)的频数以下是甲、乙所作频数统计表的部分数据甲的频数统计表(部分)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数30146102 1001 027376697乙的频数统计表(部分)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数30121172 1001 051696353当时,根据表中的数据,分别写出甲、乙所编程序各自输出的值为的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大。【解题指南】求解本题的关键是证明理解题意,并且弄清框图的功能,在第()问中应比较频率的趋势与概率进行判断.【解析】()变量
7、x是在1,2,3,24这24个整数中随机产生的一个数,共有24种可能.当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,故P1=;当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,故P2=;当x从6,12,18,24这4个数中产生时,输出y的值为3,故P3=.所以输出y的值为1的概率是,输出y的值为2的概率是,输出y的值为3的概率是.() 当n=2100时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下:输出y的值为1的频率输出y的值为2的频率输出y的值为1的频率甲乙比较频率趋势与概率,可得乙同学所
8、编程序符合算法要求的可能性较大.7.(2013天津高考理科T16)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率.(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.【解题指南】(1)根据组合数原理求出符合条件的取法及总取法,再求概率.(2)根据随机变量X所有可能取值列出分布列,求数学期望.【解析】(1)设“取出的4张卡片中, 含有编号为3的卡片”为事件A,则所以,取出的4张卡片中, 含有编号为
9、3的卡片的概率为. (2)设随机变量X的所有可能取值为1,2,3,4.所以随机变量X的分布列是 X1234P随机变量X的分布列和数学期望8.(2013浙江高考理科T19)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,求的分布列.(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量为取出此球所得分数.若E()= ,D()= ,求abc.【解题指南】(1)在分析取到两球的颜色时,要注意是有放回地抽取,即同
10、一个球可能两次都能抽到;(2)根据计算数学期望与方差的公式计算,寻找a,b,c之间的关系.【解析】(1)由题意得,=2,3,4,5,6,故 , 所以的分布列为23456()由题意知的分布列为123所以 化简得,解得所以.9. (2013重庆高考理科18)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个篮球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与篮球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级(
11、)求一次摸球恰好摸到1个红球的概率;()求摸奖者在一次摸奖中获奖金额的分布列与期望【解题指南】首先设出相应的事件,根据古典概型的公式求出恰好摸到一个红球的概率,然后再求出相应事件的概率列出分布列求出期望.【解析】设表示摸到个红球,表示摸到个蓝球,则与独立.()恰好摸到1个红球的概率为()的所有可能值为,且综上知,的分布列为 从而有(元).10. (2013湖南高考理科18)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
12、X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.【解题指南】(1)本三角形地共有15株作物,其中内部3株,边界12株,结合题意求解相应概率.(2)先弄清15株满足相应年产量的各有多少株,然后求出对应的概率,写出分布列再求期望.【解析】(1)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有种,选取的两株作物恰好
13、“相近”的不同结果有3+3+2=8种.故从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率为.(2)先求从所种作物中随机选取的一株作物的年收获量Y的分布列.因为P(Y=51)=P(X=1),P(Y=48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4),所以只需求出P(X=k)(k=1,2,3,4)即可,记nk为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3.由P(X=k)=得P(X=1)= ,P(X=2)= ,P(X=3)= =,P(X=4)= =,故所求的分布列为Y51484542P所求的数学期
14、望为.11. (2013江西高考理科18)小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6,A7,A8(如图)这8个点中任取两点分别分终点得到两个向量,记这两个向量的数量积为X.若X=0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率;(2)求X的分布列和数学期望.【解题指南】(1)将基本事件总数求出,然后找所求概率事件的基本事件数,由古典概型公式求得结果;(2)先确定X的可能取值,然后再计算各个概率值即得分布列,最后计算期望值.【解析】(1)从8个点中任取两点为向量终点的不同取法共有种,时,两向量夹角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课堂新坐标 【课堂新坐标】2021届高考数学二轮复习 考点50 离散型随机变量及其分布列、离散型随机变量的均
链接地址:https://www.taowenge.com/p-28151668.html
限制150内