【科学备考】(新课标)2021高考数学二轮复习 第十二章 概率与统计 离散随机变量及其分布列、均值与方差 理(含2021试题).doc
《【科学备考】(新课标)2021高考数学二轮复习 第十二章 概率与统计 离散随机变量及其分布列、均值与方差 理(含2021试题).doc》由会员分享,可在线阅读,更多相关《【科学备考】(新课标)2021高考数学二轮复习 第十二章 概率与统计 离散随机变量及其分布列、均值与方差 理(含2021试题).doc(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【科学备考】(新课标)2015高考数学二轮复习 第十二章 概率与统计 离散随机变量及其分布列、均值与方差 理(含2014试题) 理数1. (2014陕西,9,5分)设样本数据x1,x2,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,10),则y1,y2,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a答案 1.A解析 1.x1,x2,x10的均值=1,方差=4,且yi=xi+a(i=1,2,10),y1,y2,y10的均值=(y1+y2+y10)=(x1+x2+x10+10a)=(x1+x2+x10)+a=+a=1+a,其方差=
2、(y1-)2+(y2-)2+(y10-)2=(x1-1)2+(x2-1)2+(x10-1)2=4.故选A.2. (2014河北石家庄高中毕业班复习教学质量检测(二),4) 等差数列的公差为1,随机变量等可能的取值,则方差为( ) 答案 2. B解析 2. 由已知可得:均值,所以=,选B.3.(2014浙江,12,4分)随机变量的取值为0,1,2.若P(=0)=,E()=1,则D()=_.答案 3.解析 3.设P(=1)=p,则P(=2)=-p,从而由E()=0+1p+2=1,得p=.故D()=(0-1)2+(1-1)2+(2-1)2=.4.(2014山东潍坊高三3月模拟考试数学(理)试题,14
3、)如图,茎叶图表示甲、乙两名篮球运动员在五场比赛中的得分,其中一个数字被污损,则甲的平均得分不超过乙的平均得分的概率为 答案 4. 解析 4. 设被污损的数字为x(). 甲的平均分为,乙的平均分为,解得,所以x可以取3、4、5、6、7、8、9共7个数值,所以所求概率为.5. (2014大纲全国,20,12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.()求同一工作日至少3人需使用设备的概率;()X表示同一工作日需使用设备的人数,求X的数学期望.答案 5.查看解析解析 5.记Ai表示事件:同一工作日乙、丙中恰有i人需使用设
4、备,i=0,1,2,B表示事件:甲需使用设备,C表示事件:丁需使用设备,D表示事件:同一工作日至少3人需使用设备.()D=A1BC+A2B+A2C,P(B)=0.6,P(C)=0.4,P(Ai)=0.52,i=0,1,2,(3分)所以P(D)=P(A1BC+A2B+A2C)=P(A1BC)+P(A2B)+P(A2C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P()P(C)=0.31.(6分)()X的可能取值为0,1,2,3,4,则P(X=0)=P(A0)=P()P(A0)P()=(1-0.6)0.52(1-0.4)=0.06,P(X=1)=P(BA0+A0C+A1)=P(B)
5、P(A0)P()+P()P(A0)P(C)+P()P(A1)P()=0.60.52(1-0.4)+(1-0.6)0.520.4+(1-0.6)20.52(1-0.4)=0.25,P(X=4)=P(A2BC)=P(A2)P(B)P(C)=0.520.60.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,(10分)数学期望EX=0P(X=0)+1P(X=1)+2P(X=2)+3P(X=3)+4P(X=4)=0.25+20.38+30.25+40.06=2.(
6、12分)6. (2014重庆,18,13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.()求所取3张卡片上的数字完全相同的概率;()X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数a,b,c满足abc,则称b为这三个数的中位数.)答案 6.查看解析解析 6.()由古典概型中的概率计算公式知所求概率为P=.()X的所有可能值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,故X的分布列为X123P从而E(X)=1+2+3=.7. (2014四川,17,12分)一款击鼓小游戏
7、的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.()设每盘游戏获得的分数为X,求X的分布列;()玩三盘游戏,至少有一盘出现音乐的概率是多少?()玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.答案 7.查看解析解析 7.()X可能的取值为10,20,100,-200.根据题意,有P(X=10)
8、=,P(X=20)=,P(X=100)=,P(X=-200)=.所以X的分布列为X1020100-200P()设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X=-200)=.所以,“三盘游戏中至少有一次出现音乐”的概率为1-P(A1A2A3)=1-=1-=.因此,玩三盘游戏至少有一盘出现音乐的概率是.()X的数学期望为EX=10+20+100-200=-.这表明,获得分数X的均值为负.因此,多次游戏之后分数减少的可能性更大.8. (2014福建,18,13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从
9、一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.()若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:(i)顾客所获的奖励额为60元的概率;(ii)顾客所获的奖励额的分布列及数学期望;()商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.答案 8.查看解析解析 8.()设顾客所获的奖励额为X.(i)依题意,得P(X=6
10、0)=,即顾客所获的奖励额为60元的概率为.(ii)依题意,得X的所有可能取值为20,60.P(X=60)=,P(X=20)=,即X的分布列为X2060P0.50.5所以顾客所获的奖励额的期望为E(X)=200.5+600.5=40(元).()根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),
11、记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X12060100PX1的期望为E(X1)=20+60+100=60,X1的方差为D(X1)=(20-60)2+(60-60)2+(100-60)2=.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2406080PX2的期望为E(X2)=40+60+80=60,X2的
12、方差为D(X2)=(40-60)2+(60-60)2+(80-60)2=.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.注:第()问,给出方案1或方案2的任一种方案,并利用期望说明所给方案满足要求,给3分;进一步比较方差,说明应选择方案2,再给2分.9. (2014江西,21,14分)随机将1,2,2n(nN*,n2)这2n个连续正整数分成A,B两组,每组n个数.A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2.记=a2-a1,=b2-b1.(1)当n=3时,求的分布列和数学期望;(2)令C表示事件“与的取值恰好相等”,求事件C发生的
13、概率P(C);(3)对(2)中的事件C,表示C的对立事件,判断P(C)和P()的大小关系,并说明理由.答案 9.查看解析解析 9.(1)当n=3时,的所有可能取值为2,3,4,5.将6个正整数平均分成A,B两组,不同的分组方法共有=20种,所以的分布列为2345PE=2+3+4+5=.(2)和恰好相等的所有可能取值为n-1,n,n+1,2n-2.又和恰好相等且等于n-1时,不同的分组方法有2种;和恰好相等且等于n时,不同的分组方法有2种;和恰好相等且等于n+k(k=1,2,n-2)(n3)时,不同的分组方法有2种,所以当n=2时,P(C)=,(3)由(2)知当n=2时,P()=,因此P(C)P
14、(),而当n3时,P(C)P().理由如下:用数学归纳法来证明:1当n=3时,式左边=4(2+)=4(2+2)=16,式右边=20,所以式成立.那么,当n=m+1时,即当n=m+1时式也成立.综合1,2得,对于n3的所有正整数,都有P(C)P()成立.10. (2014湖北,20,12分)计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年
15、入流量相互独立.()求未来4年中,至多有1年的年入流量超过120的概率;()水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X40X120发电机最多可运行台数123若某台发电机运行,则该台年利润为5 000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?答案 10.查看解析解析 10.()依题意,p1=P(40X120)=0.1.由二项分布,在未来4年中至多有1年的年入流量超过120的概率为p=(1-p3)4+(1-p3)3p3=+4=0.947 7.()记水电站年总利润为Y(单位:万元
16、).(1)安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5 000,E(Y)=5 0001=5 000.(2)安装2台发电机的情形.依题意,当40X80时,一台发电机运行,此时Y=5 000-800=4 200,因此P(Y=4 200)=P(40X80)=p1=0.2;当X80时,两台发电机运行,此时Y=5 0002=10 000,因此P(Y=10 000)=P(X80)=p2+p3=0.8;由此得Y的分布列如下:Y4 20010 000P0.20.8所以,E(Y)=4 2000.2+10 0000.8=8 840.(3)安装3台发电机的情形.依
17、题意,当40X80时,一台发电机运行,此时Y=5 000-1 600=3 400,因此P(Y=3 400)=P(40X120时,三台发电机运行,此时Y=5 0003=15 000,因此P(Y=15 000)=P(X120)=p3=0.1,由此得Y的分布列如下:Y3 4009 20015 000P0.20.70.1所以,E(Y)=3 4000.2+9 2000.7+15 0000.1=8 620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.11. (2014湖南,17,12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B.设
18、甲、乙两组的研发相互独立.()求至少有一种新产品研发成功的概率;()若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.答案 11.查看解析解析 11.记E=甲组研发新产品成功,F=乙组研发新产品成功,由题设知P(E)=,P()=,P(F)=,P()=,且事件E与F,E与,与F,与都相互独立.()记H=至少有一种新产品研发成功,则=,于是P()=P()P()=,故所求的概率为P(H)=1-P()=1-=.()设企业可获利润为X(万元),则X的可能取值为0,100,120,220,因为P(X=0)=P()=,P(X=
19、100)=P(F)=,P(X=120)=P(E)=,P(X=220)=P(EF)=.故所求的分布列为X0100120220P数学期望为E(X)=0+100+120+220=140.12. (2014陕西,19,12分)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300500概率0.50.5作物市场价格(元/kg)610概率0.40.6()设X表示在这块地上种植1季此作物的利润,求X的分布列;()若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.答案 12.查看
20、解析解析 12.()设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,利润=产量市场价格-成本,X所有可能的取值为50010-1 000=4 000,5006-1 000=2 000,30010-1 000=2 000,3006-1 000=800.P(X=4 000)=P()P()=(1-0.5)(1-0.4)=0.3,P(X=2 000)=P()P(B)+P(A)P()=(1-0.5)0.4+0.5(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.50.4=0.2,所以X的分布列为X4 0002 000
21、800P0.30.50.2()设Ci表示事件“第i季利润不少于2 000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由()知,P(Ci)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2 000元的概率为P(C2C3)+P(C1C3)+P(C1C2)=30.820.2=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.13.(2014安徽,17,12分)甲
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 科学备考 【科学备考】新课标2021高考数学二轮复习 第十二章 概率与统计 离散随机变量及其分布列、均值与方差 理含2021试题 科学 备考 新课 2021 高考 数学 二轮 复习 第十二 概率
链接地址:https://www.taowenge.com/p-28153894.html
限制150内