《2022年强化训练北师大版七年级数学下册期末定向攻克-卷(Ⅱ)(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版七年级数学下册期末定向攻克-卷(Ⅱ)(含答案详解).docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 北师大版七年级数学下册期末定向攻克 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图标中是轴对称图形的是( )ABCD2、如图,为了估算河的宽度
2、,我们可以在河的对岸选定一个目标点,再在河的这一边选定点和,使,并在垂线上取两点、,使,再作出的垂线,使点、在同一条直线上,因此证得,进而可得,即测得的长就是的长,则的理论依据是( )ABCD3、如图,直线AB、CD相交于点O,OE平分BOC,若BOD:BOE=1:2,则AOE的大小为()A72B98C100D1084、如图,在22正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的ABC为格点三角形,在图中可以画出与ABC成轴对称的格点三角形的个数为( )A2个B3个C4个D5个5、下列各式中,计算结果为的是( )ABCD6、 “翻开九年级上册数学书,恰好翻到第100
3、页”,这个事件是( )A必然事件B随机事件C不可能事件D确定事件7、下表为某旅游景点旺季时的售票量、售票收入的变化情况,在该变化过程中,常量是( )日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日售票量x(张)3154222452385048746564262761512714售票收入y(元)3154200224520038540004874600564260027615001271400 线 封 密 内 号学级年名姓 线 封 密 外 A票价B售票量C日期D售票收入8、下列图案是轴对称图形的是()ABCD9、下列图形不是轴对称图形的是( )ABCD10、如图,已知,要
4、使,添加的条件不正确的是( )ABCD第卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,直线 a、b相交于点O,将量角器的中心与点O重合,发现表示60的点在直线a上,表示135的点在直线b上,则1_2、请你发现图中的规律,在空格_上画出简易图案3、等腰三角形的周长为12cm,底边长为ycm,腰长为xcm则y与x之间的关系式是_4、如图,已知AB3,ACCD1,DBAC90,则ACE的面积是 _5、如图,点D与点D关于AE对称,CED60,则AED的度数为_6、如图,在ABC中,点D为BC边延长线上一点,若ACD75,A45,则B的度数为_ 线 封 密 内 号学级年
5、名姓 线 封 密 外 7、某家庭电话,打进的电话响第一声时被接的概率为0.1,响第二声被接的概率为0.2,响第三声或第四声被接的概率都是0.25,则电话在响第五声之前被接的概率为_8、如图,直角三角形纸片的两直角边分别为6和8,现将ABC折叠,使点A与点B重合,折痕为DE,则CBE的周长是_9、在“线段、钝角、三角形、等腰三角形、圆”这五个图形中,是轴对称图形的有_个10、汽车离开甲站后,以的速度匀速前进了,则汽车离开甲站所走的路程与时间之间的关系式是_.三、解答题(5小题,每小题8分,共计40分)1、先化简,再求值:,其中2、如图,在长方形ABCD中,AB=4,BC=5,延长BC到点E,使得
6、CE=CD,连结DE若动点P从点B出发,以每秒2个单位的速度沿着BC-CD-DA向终点A运动,设点P的运动时间为t秒(1)CE= ;当点P在BC上时,BP= (用含有t的代数式表示);(2)在整个运动过程中,点P运动了 秒;(3)当t= 秒时,ABP和DCE全等;(4)在整个运动过程中,求ABP的面积3、如图,已知ABAD,ACAE,BCDE,延长BC分别交边AD、DE于点F、G(1)B与D相等吗?为什么?(2)若CAE49,求BGD的度数4、一只不透明的袋子中有个红球、个绿球和个白球,这些球除颜色外都相同,将球搅匀,从中任意摸出个球(1)会出现哪些可能的结果?(2)能够事先确定摸到的一定是红
7、球吗?(3)你认为摸到哪种颜色的球的可能性最大?哪种颜色的球的可能性最小?(4)怎样改变袋子中红球、绿球、白球的个数,使摸到这三种颜色的球的概率相同?5、如图,圆柱的高是3cm,当圆柱的底面半径rcm由小到大变化时,圆柱的体积Vcm3也随之发生了变化.(1)在这个变化中,自变量是_,因变量是_;(2)写出体积V与半径r的关系式; 线 封 密 内 号学级年名姓 线 封 密 外 (3)当底面半径由1cm变化到10cm时,通过计算说明圆柱的体积增加了多少cm3.-参考答案-一、单选题1、B【详解】解:选项A中的图形不是轴对称图形,故A不符合题意;选项B中的图形是轴对称图形,故B符合题意;选项C中的图
8、形不是轴对称图形,故C不符合题意;选项D中的图形不是轴对称图形,故D不符合题意;故选B【点睛】本题考查的是轴对称图形的识别,轴对称图形的概念:把一个图形沿某条直线对折,对折后直线两旁的部分能够完全重合;掌握“轴对称图形的概念”是解本题的关键.2、C【分析】根据题意及全等三角形的判定定理可直接进行求解【详解】解:,在和中,(ASA),;故选C【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键3、D【分析】根据角平分线的定义得到COEBOE,根据邻补角的定义列出方程,解方程求出BOD,根据对顶角相等求出AOC,结合图形计算,得到答案【详解】解:设BODx,BOD
9、:BOE1:2,BOE2x,OE平分BOC,COEBOE2x,x+2x+2x180,解得,x36,即BOD36,COE72,AOCBOD36,AOECOE+AOC108,故选:D 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180是解题的关键4、D【分析】在网格中画出轴对称图形即可【详解】解:如图所示,共有5个格点三角形与ABC成轴对称,故选:D【点睛】本题考查了轴对称,解题关键是熟练掌握轴对称的定义,准确画出图形5、B【分析】根据幂的运算法则即可求解【详解】A. =,故错误; B. =,正确;C. 不能计算,故错误; D
10、. =,故错误;故选B【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则6、B【详解】解:“翻开九年级上册数学书,恰好翻到第100页”,这个事件是随机事件,故选:B【点睛】本题考查了随机事件,熟记随机事件的定义(在一定条件下,可能发生也可能不发生的事件称为随机事件)是解题关键7、A【分析】结合题意,根据变量和常量的定义分析,即可得到答案【详解】根据题意,10月1日到10月7日的数据计算,得票价均为100元常量是票价故选:A【点睛】本题考查了函数的基础知识;解题的关键是熟练掌握变量和常量的性质,从而完成求解8、D【分析】根据轴对称图形的定义,即是指在平面内沿一条直线折叠,直线两旁的部分能够
11、完全重合的图形叫轴对称图形判断即可; 线 封 密 内 号学级年名姓 线 封 密 外 【详解】由已知图形可知, 是轴对称图形;故选D【点睛】本题主要考查了轴对称图形的识别,准确分析判断是解题的关键9、B【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】选项A、C、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,选项B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:B【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置
12、10、D【分析】已知条件ABAC,还有公共角A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可【详解】解:A、添加BDCE可得ADAE,可利用利用SAS定理判定ABEACD,故此选项不合题意;B、添加ADCAEB可利用AAS定理判定ABEACD,故此选项不合题意;C、添加BC可利用ASA定理判定ABEACD,故此选项不合题意;D、添加BECD不能判定ABEACD,故此选项符合题意;故选:D【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键二、填空题1、75【分析】先计算AOB的度
13、数,后利用对顶角相等确定即可【详解】如图,根据题意,得AOB=135-60=75,AOB=1, 1=75,2、 线 封 密 内 号学级年名姓 线 封 密 外 【分析】由图知,该图案是1,2,3,4,5的轴对称构成的图象,据此可得答案【详解】解:为1的轴对称构成的图象,为2的轴对称构成的图象,为4的轴对称构成的图象,为5的轴对称构成的图象,故横线上为3的轴对称构成的图象故答案为【点睛】本题考查了图形的变化规律解题的关键是根据题意得到图案是1,2,3,4,5的轴对称构成的图象3、【分析】根据三角形的周长公式:底边长=周长-2腰长可求出底边长与腰的函数关系式.【详解】解:因为等腰三角形周长为12,根
14、据等腰三角形周长公式可求出底边长与腰的函数关系式为:,故答案为:.【点睛】本题考查了根据实际问题列一次函数关系式的知识,同时考查了等腰三角形的性质.4、#【分析】先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得【详解】解:在和中,则的面积是,故答案为:【点睛】本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键5、60【分析】由轴对称的性质可得,再根据,求解即可【详解】解:由对称的性质可得, 线 封 密 内 号学级年名姓 线 封 密 外 又,故答案为【点睛】此题考查了轴对称的性质,以及邻补角的性质,解题的关键是掌握轴对称以及邻补
15、角的性质6、30【分析】根据三角形的外角的性质,即可求解【详解】解: , ,ACD75,A45, 故答案为:30【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键7、0.8【分析】依题意电话在响第五声之前被接的概率等于打进的电话响第一声时被接的概率+响第二声被接的概率+响第三声和第四声被接的概率,计算得出结果【详解】打进的电话响第一声时被接的概率为0.1,响第二声被接的概率为0.2,响第三声或第四声被接的概率都是0.25,电话在响第五声之前被接的概率为故答案为:0.8【点睛】本题考查了概率的应用,掌握概率的定义是解题的关键8、14【分析】根
16、据图形翻折变换的性质得出AEBE,进而可得出CBE的周长ACBC【详解】解:BDE是ADE翻折而成,AEBE,CBE的周长BCBECEBCAECEBCAC,角三角形纸片的两直角边长分别为6和8,CBE的周长是14故答案为:14【点睛】本题考查的是图形翻折变换的性质,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键9、【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据轴对称图形的概念求解即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外
17、 解:根据轴对称图形的定义可知:线段、钝角、等腰三角形和圆都是轴对称图形而三角形不一定是轴对称图形故答案为:4【点睛】本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合10、【解析】【分析】根据路程与时间的关系,可得函数解析式【详解】汽车离开甲站所走的路程=速度时间+初始路程,故.【点睛】本题考查用关系式表示变量之间的关系,解决本题的关键是能找出因变量和自变量之间的等量关系.三、解答题1、,【分析】根据完全平方公式和整式乘法法则进行化简,再代入数值计算即可【详解】解:,=,=,把代入,原式=【点睛】本题考查了整式的化简求值,解题关键是熟练运用乘法公式和整式乘法法则进
18、行化简2、(1)2,2t;(2)7;(3)1或6;(4)ABP的面积为【分析】(1)根据CE=CD可求得CE的长,利用速度时间即可求得BP的长;(2)先计算出总路程,再利用路程速度即可计算出用时;(3)分两种情况,利用全等三角形的性质即可求解;(4)分三种情况,利用三角形的面积公式求解即可【详解】解:(1)CE=CD,AB=CD=4,CE=2,点P从点B出发,以每秒2个单位的速度运动,BP=2t;故答案为:2,2t;(2)点P运动的总路程为BC+CD+DA=5+4+5=14,在整个运动过程中,点P运动了(秒); 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:7;(3)当点P在BC上时
19、,ABPDCE,BP=CE=2,2t=2,解得:t=1;当点P在AD上时,BAPDCE,AP=CE=2,点P运动的总路程为BC+CD+DA-AP=5+4+5-2=12,2t=12,解得:t=6;综上,当t=1或6秒时,ABP和DCE全等;故答案为:1或6;(4)当点P在BC上,即0t时,AB=4,BP=2t,ABP的面积为ABBP=4t;当点P在CD上,即t时,AB=4,BC=5,ABP的面积为ABBC=10;当点P在BC上,即7时,AB=4,AP=14-2t,ABP的面积为ABBP=28-4t;综上,ABP的面积为【点睛】本题考查了全等三角形的性质等知识,解题的关键是学会用分类讨论的思想思考
20、问题3、(1)相等,理由见解析;(2)【分析】(1)根据SSS证明,然后由全等三角形对应边相等即可证明;(2)由可得,进而可求出,然后根据三角形外角的性质即可求出BGD的度数【详解】解:(1)相等,理由如下:在和中,; 线 封 密 内 号学级年名姓 线 封 密 外 (2),【点睛】此题考查了全等三角形的性质和判定,三角形外角的性质,解题的关键是熟练掌握根据题意证明4、(1)从中任意摸出个球可能是红球,也可能是绿球或白球;(2)不能事先确定摸到的一定是红球;(3)摸到白球的可能性最大,摸到红球的可能性最小;(4)只要袋子中红球、绿球和白球的数量相等即可【分析】(1)根据事情发生的可能性,即可进行
21、判断;(2)根据红球的多少判断,只能确定有可能出现;(3)根据白球的数量最多,摸出的可能性就最大,红球的数量最少,摸出的可能性就最小;(4)根据概率相等就是出现的可能性一样大,可让数量相等即可【详解】解:(1)从中任意摸出1个球可能是红球,也可能是绿球或白球;(2)不能事先确定摸到的一定是红球;(3)摸到白球的可能性最大,摸到红球的可能性最小;(4)只要袋子中红球、绿球和白球的数量相等即可【点睛】此题主要考查了事件发生的可能性,关键是根据事件发生的可能大小和概率判断即可,比较简单的中考常考题5、(1)半径;体积;(2)V=3r2;(3)297cm3.【分析】(1)根据常量和变量的定义来判断自变量、因变量和常量;(2)圆柱体的体积等于底面积乘以高,底面积等于乘以半径的平方,将它用含有V和r的关系式表达出来即可;(3)利用圆柱的体积计算方法计算增加的体积即可【详解】(1)根据函数的定义可知,对于底面半径的每个值,体积按照一定的法则有一个确定的值与之对应,所以自变量是:半径,因变量是:体积.(2)根据圆柱体的体积计算公式:V=3r2.(3)体积增加了(10212)3=297cm3.【点睛】本题考查变量之间的关系,(1)考查自变量与因变量,理解自变量与因变量的定义是解题关键;(2)考查用关系式法表示变量之间的关系,在本题中掌握圆柱体体积的计算方法尤为重要;(3)分别代入求值做差即可.
限制150内