2022年最新强化训练北师大版八年级数学下册第六章平行四边形定向测试试题(含详解).docx
《2022年最新强化训练北师大版八年级数学下册第六章平行四边形定向测试试题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练北师大版八年级数学下册第六章平行四边形定向测试试题(含详解).docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版八年级数学下册第六章平行四边形定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,三角形ABC和平行四边形ABDE面积相等的是()ABCD2、如图所示,在 ABCD中,对角线AC,
2、BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F, ,则 ABCD的面积为( ) A24B32C40D483、如图,已知正方形ABCD中,G、P分别是DC、BC上的点,E、F分别是AP、GP的中点,当P在BC上从B向C移动而G不动时,下列结论成立的是( )A线段EF的长逐渐增大B线段EF的长逐渐减小C线段EF的长不改变D线段EF的长不能确定4、如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则1+2()A90B180C270D3605、一个正多边形的每个外角都等于45,则这个多边形的边数和对角线的条数分别是( )A8,20B10,35C6,9D5,56、在ABC中,AD是角平
3、分线,点E、F分别是线段AC、CD的中点,若ABD、EFC的面积分别为21、7,则的值为( )ABCD7、如图,ABC以点O为旋转中心,旋转180后得到ED是ABC的中位线,经旋转后为线段已知,则BC的值是( )A1B2C4D58、如图,四边形ABCD中,A=60,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )ABCD9、已知正多边形的一个外角等于40,则这个正多边形的内角和的度数为_A360B1260C1120D116010、一个多边形纸片剪去一个内角后,得到一个内角和为2340的新多边形,则
4、原多边形的边数为( )A14或15或16B15或16或17C15或16D16或17第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知平行四边形ABCD的两条对角线交于平面直角坐标系的原点,点A的坐标为(3,4),则点C的坐标为_2、如图,在四边形ABCD中,ABBCBD,ABC110,则ADC的度数为 _3、如图,在平行四边形ABCD中,AB4,BC5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是 _4、如图是中国古代建筑中的一个正六边形的窗
5、户,则它的内角和为 _5、如图,平行四边形ABCD中,对角线AC、BD交于点O,M、N分别为AB、BC的中点,若OM1.5,ON1,则平行四边形ABCD的周长是_三、解答题(5小题,每小题10分,共计50分)1、(1)如图,在中,求的度数(2)已知一个正多边形的内角和比它的外角和的倍多,求这个正多边形每个外角的度数2、一个多边形的每个外角为60,求这个多边形的内角和3、如图1,在ABC中,ABAC,BAC,点D、E分别在边AB、AC上,ADAE,连接DC,点F、P、G分别为DE、DC、BC的中点(1)观察猜想:图1中,线段PF与PG的数量关系是 ,FPG (用含的代数式表示)(2)探究证明:当
6、ADE绕点A旋转到如图2所示的位置时,小新猜想(1)中的结论仍然成立,请你证明小新的猜想4、如图1,在等腰直角三角形ABC中,BAC90,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方旋转90,得到AG,连接GC,HB(1)证明:AHBAGC(2)如图2,连接HG和GF,其中HG交AF于点Q证明:在点H的运动过程中,总有HFG90;若ABAC4,当EH的长度为多少时,AQG为等腰三角形?5、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:如图(1),在正ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若BON60,则
7、BMCN;如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若BON90,则BMCN然后运用类似的思想提出了如下命题:如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若BON108,则BMCN任务要求:(1)请你从三个命题中选择一个进行证明;(2)请你继续完成下面的探索;在正n(n3)边形ABCDEF中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当BON等于多少度时,结论BMCN成立(不要求证明);如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,BON108时,试问结
8、论BMCN是否成立若成立,请给予证明;若不成立,请说明理由-参考答案-一、单选题1、C【分析】根据三角形的面积公式和平行四边形的面积公式解答即可【详解】解:三角形ABC的面积,平行四边形ABDE的面积428,不相等;三角形ABC的面积,平行四边形ABDE的面积428,相等;三角形ABC的面积,平行四边形ABDE的面积428,相等;三角形ABC的面积,平行四边形ABDE的面积428,相等;故选:C【点睛】此题考查平行四边形的性质,关键是根据三角形的面积公式和平行四边形的面积公式解答2、B【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根
9、据平行四边形的性质即可得【详解】解:四边形是平行四边形,在和中,则的面积为,故选:B【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键3、C【分析】连接AG,根据三角形中位线定理可得EF= AG,因此线段EF的长不变【详解】解:如图,连接AG,E、F分别是AP、GP的中点, EF为APG的中位线,EF= AG,为定值线段EF的长不改变故选C【点睛】本题考查了三角形的中位线定理,只要三角形的边AG不变,则对应的中位线的长度就不变4、C【分析】首先根据三角形内角和定理算出的度数,再根据四边形内角和为,计算出的度数【详解】解:,故选:C【点睛】
10、本题主要考查了三角形内角和定理,多边形内角和定理,解题的关键是利用三角形的内角和,四边形的内角和5、A【分析】利用多边形的外角和是360度,正多边形的每个外角都是45,求出这个多边形的边数,再根据一个多边形有条对角线,即可算出有多少条对角线【详解】解:正多边形的每个外角都等于45,36045=8,这个正多边形是正8边形,=20(条),这个正多边形的对角线是20条故选:A【点睛】本题主要考查的是多边的外角和,多边形的对角线及正多边形的概念和性质,任意多边形的外角和都是360,和边数无关正多边形的每个外角都相等任何多边形的对角线条数为条6、B【分析】过点A作ABC的高,设为x,过点E作EFC的高为
11、,可求出,再由点E、F分别是线段AC、CD的中点,可得出,进而求出,再利用角平分线的性质可得出的值为即可求解【详解】解:过点A作ABC的高,设为x,过点E作EFC的高为, , , ,点E、F分别是线段AC、CD的中点, , , , ,过点D作DMAB,DNAC,AD为平分线,DM=DN,即: ,故选:B【点睛】本题考查角平分线性质定理及三角形中位线的性质,解题关键是求出7、C【分析】先根据旋转的性质可得ED ED2,再根据三角形的中位线定理求解即可【详解】解:ABC以点O为旋转中心,旋转180后得到ABC,ED是ABC的中位线,经旋转后为线段ED,EDED2,BC2ED4,故选C【点睛】本题考
12、查旋转的性质、三角形的中位线定理,掌握旋转的性质是解题的关键8、A【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值 连接DB,过点D作DHAB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:ED=EM,MF=FN, EF=DN, DN最大时,EF最大, N与B重合时DN=DB最大,在RtADH中, A=60 AH=2=1,DH=,BH=ABAH=31=2, DB=, EFmax=DB=, EF的最大值为故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 强化 训练 北师大 八年 级数 下册 第六 平行四边形 定向 测试 试题 详解
限制150内