2022年最新人教版八年级数学下册第十八章-平行四边形专题练习练习题(无超纲).docx
《2022年最新人教版八年级数学下册第十八章-平行四边形专题练习练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版八年级数学下册第十八章-平行四边形专题练习练习题(无超纲).docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十八章-平行四边形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图菱形ABCD,对角线AC,BD相交于点O,若BD8,AC6,则AB的长是( )A5B6C8D102、如图
2、所示,ABCD,ADBC,则图中的全等三角形共有( )A1对B2对C3对D4对3、如图,把矩形纸片沿对角线折叠,若重叠部分为,那么下列说法错误的是( )A是等腰三角形B和全等C折叠后得到的图形是轴对称图形D折叠后和相等4、在ABC中,AD是角平分线,点E、F分别是线段AC、CD的中点,若ABD、EFC的面积分别为21、7,则的值为( )ABCD5、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD12,则DOE的周长是( )A12B15C18D246、如图,四边形ABCD中,A=60,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M
3、不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )ABCD7、如图,在长方形ABCD中,AB10cm,点E在线段AD上,且AE6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上以vcm/s的速度由点B向点C运动,当EAP与PBQ全等时,v的值为()A2B4C4或D2或8、如图,把一张长方形纸片ABCD沿AF折叠,使B点落在处,若,要使,则的度数应为( )A20B55C45D609、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB9,AD,则四边形CDFE的面积是()ABCD5410、将一张长方形
4、纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若10,则EAF的度数为()A40B45C50D55第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、正方形的一条对角线长为4,则这个正方形面积是_2、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_3、如图,在直角三角形ABC中,B=90,点D是AC边上的一点,连接BD,把CBD沿着BD翻折,点C落在AB边上的点E处,得到EBD,连接CE交BD于点F,BG为EBD的中线若BC=4,EBG的面积为3,则CD的长为_4、如图,在矩形ABCD中,AB3,BC4,点P是对角线AC
5、上一点,若点P、A、B组成一个等腰三角形时,PAB的面积为_5、如图,已知正方形ABCD的边长为6,E、F分别是AB、BC边上的点,且EDF45,将DAE绕点D逆时针旋转90,得到DCM若AE2,则FM的长为 _三、解答题(5小题,每小题10分,共计50分)1、如图所示,在ABC中,AD是边BC上的高,CE是边AB上的中线,G是CE的中点,AB=2CD,求证:DGCE 2、如图,在正方形ABCD中,DFAE,AE与DF相交于点O(1)求证:DAFABE;(2)求AOD的度数3、如图所示,正方形中,点E,F分别为BC,CD上一点,点M为EF上一点,M关于直线AF对称(1)求证:B,M关于AE对称
6、;(2)若的平分线交AE的延长线于G,求证:4、如图,四边形ABCD是菱形,DEAB、DFBC,垂足分别为E、F求证:BEBF5、在如图所示的43网格中,每个小正方形的边长均为1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段点A固定在格点上(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a ,b , ;(2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为 , -参考答案-一、单选题1、A【解析】【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AOBO,由勾股定理求出AB【详解】解:四边形ABCD是菱形,AC=6,
7、BD=8,OA=OC=3,OB=OD=4,AOBO,在RtAOB中,由勾股定理得:,故选:A【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键2、D【解析】【分析】根据平行四边形的判定与性质,求解即可【详解】解:ABCD,ADBC四边形为平行四边形,、又,、图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质3、D【解析】【分析】根据题意结合图形可以证明EB=ED,进而证明ABECDE;此时可以判断选项A、B、D是成立的,问题即可解决【详解】解:由题意得:BCDBF
8、D,DC=DF,C=F=90;CBD=FBD,又四边形ABCD为矩形,A=F=90,DEBF,AB=DF,EDB=FBD,DC=AB,EDB=CBD,EB=ED,EBD为等腰三角形;在ABE与CDE中,ABECDE(HL);又EBD为等腰三角形,折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,不能证明D是正确的,故说法错误的是D,故选:D【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答4、B【解析】【分析】过点A作ABC的高,设为x,过点E作EFC的高为,可求出
9、,再由点E、F分别是线段AC、CD的中点,可得出,进而求出,再利用角平分线的性质可得出的值为即可求解【详解】解:过点A作ABC的高,设为x,过点E作EFC的高为, , , ,点E、F分别是线段AC、CD的中点, , , , ,过点D作DMAB,DNAC,AD为平分线,DM=DN,即: ,故选:B【点睛】本题考查角平分线性质定理及三角形中位线的性质,解题关键是求出5、B【解析】【分析】根据平行四边形的对边相等和对角线互相平分可得,OBOD,又因为E点是CD的中点,可得OE是BCD的中位线,可得OEBC,所以易求DOE的周长【详解】解:ABCD的周长为36,2(BCCD)36,则BCCD18四边形
10、ABCD是平行四边形,对角线AC,BD相交于点O,BD12,ODOBBD6又点E是CD的中点,OE是BCD的中位线,DECD,OEBC,DOE的周长ODOEDEBD(BCCD)6915,故选:B【点睛】本题考查了三角形中位线定理、平行四边形的性质解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质6、A【解析】【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值 连接DB,过点D作DHAB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:ED=EM,MF=FN
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 新人 八年 级数 下册 第十八 平行四边形 专题 练习 练习题 无超纲
限制150内