2022年最新强化训练北师大版八年级数学下册第六章平行四边形定向测评试题(含答案解析).docx
《2022年最新强化训练北师大版八年级数学下册第六章平行四边形定向测评试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练北师大版八年级数学下册第六章平行四边形定向测评试题(含答案解析).docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版八年级数学下册第六章平行四边形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD中,ADBC,点P是对角线BD的中点,E、F分别是AB、CD的中点,若EPF130,则PE
2、F的度数为()A25B30C35D502、在平行四边形中,于,于, BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:;,其中正确的结论是( )ABCD3、在ABC中,AD是角平分线,点E、F分别是线段AC、CD的中点,若ABD、EFC的面积分别为21、7,则的值为( )ABCD4、如图,桐桐从A点出发,前进3m到点B处后向右转20,再前进3m到点C处后又向右转20,这样一直走下去,她第一次回到出发点A时,一共走了( )A100mB90mC54mD60m5、如果一个多边形的每个内角都是144,那么这个多边形的边数是()A5B6C10D126、如图,点O是ABCD的对称中心,l是过点
3、O的任意一条直线,它将平行四边形分成甲、乙两部分,在这个图形上做扎针试验,则针头扎在甲、乙两个区域的可能性的大小是( )A甲大B乙大C一样大D无法确定7、n 边形的每个外角都为 15,则边数 n 为( )A20B22C24D268、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则AEF的面积为()A2B3C4D59、如图,ABC以点O为旋转中心,旋转180后得到ED是ABC的中位线,经旋转后为线段已知,则BC的值是( )A1B2C4D510、一个正多边形的外角与相邻的内角的度数之比为1:3,则这个多边形的边数是( )A8B9C6D5第卷(非选择题 70分)二、填空题(5
4、小题,每小题4分,共计20分)1、如图,直线过的中心点,交于点,交于点,己知,则S阴影=_2、一个多边形的边数增加2,则内角和与外角和增加的度数之和是_度3、如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为 _4、七边形内角和的度数是_5、一个多边形的内角和比它的外角和的2倍还多180,则它是_边形三、解答题(5小题,每小题10分,共计50分)1、如图1,在等边中,点D,E分别在边上,连接,点M,P,N分别为的中点 (1)观察猜想:图1中,线段与的数量关系是 , ;(2)探究证明:把绕点A逆时针方向旋转到图2的位置,连
5、接,则上面题(1)中的两个结论是否依然成立,并说明理由;(3)拓展延伸:把绕点A在平面内自由旋转,若,请直接写出周长的最大值2、证明:n边形的内角和为(n-2)180(n3)3、如图1,在RtABC中,BAC90,AB4,以AB为边在AB上方作等边ABD,以BC为边在BC右侧作等边CBE,连结DE(1)当AC5时,求BE的长(2)求证:BDDE(3)如图2,点C与点C关于直线AD对称,连结CE求CE的长连结CD,当CDE是以CE为腰的等腰三角形时,写出所有满足条件的AC长: (直接写出答案)4、如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如下图所示就是一组正多边形(
6、1)观察上面每个正多边形中的a,填写下表:正多边形边数456.na的度数 . (2)是否存在正n边形使得a12?若存在,请求出n的值;若不存在,请说明理由5、如图,在中,为内部的一动点(不在边上),连接,将线段绕点逆时针旋转60,使点到达点的位置;将线段绕点顺时针旋转60,使点到达点的位置,连接,(1)求证:;(2)当取得最小值时,求证:(3)如图,分别是,的中点,连接,在点运动的过程中,请判断的大小是否为定值若是,求出其度数;若不是,请说明理由-参考答案-一、单选题1、A【分析】根据三角形的中位线定理,可得 ,从而PE=PF,则有PEF=PFE,再根据三角形的内角和定理,即可求解【详解】解:
7、点P是对角线BD的中点,E、F分别是AB、CD的中点, ,ADBC,PE=PF,PEF=PFE,EPF130, 故选:A【点睛】本题主要考查了三角形的中位线定理,等腰三角形的性质,三角形的内角和定理,熟练掌握三角形的中位线定理是解题的关键2、A【分析】先判断DBE是等腰直角三角形,根据勾股定理可推导得出BD=BE,可判断不正确;根据BHE和C都是HBE的余角,可得BHE=C,再由A=C,可判断正确;证明BEHDEC,从而可得BH=CD,再由AB=CD,可判断正确;利用对应边不等可判断不正确,据此即可得到选项【详解】解:DBC=45,DEBC于E,DEB=90,BDE=180-DBE-DEB=1
8、80-45-90=45,BE=DE,在RtDBE中,BE2+DE2=BD2,BD=BE,故正确; DEBC,BFDC,HBE+BHE=90,C+FBC=90,BHE和C都是HBE的余角,BHE=C,又在ABCD中,A=C,A=BHE,故正确;在BEH和DEC中,BEHDEC(AAS),BH=CD,四边形ABCD为平行四边形,AB=CD,AB=BH,故正确;BEBHBE=DE,BCBFBH=DC,FBC=EDC,不能得到BCFDCE,故错误故选A【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键3、B【分析】过点
9、A作ABC的高,设为x,过点E作EFC的高为,可求出,再由点E、F分别是线段AC、CD的中点,可得出,进而求出,再利用角平分线的性质可得出的值为即可求解【详解】解:过点A作ABC的高,设为x,过点E作EFC的高为, , , ,点E、F分别是线段AC、CD的中点, , , , ,过点D作DMAB,DNAC,AD为平分线,DM=DN,即: ,故选:B【点睛】本题考查角平分线性质定理及三角形中位线的性质,解题关键是求出4、C【分析】根据多边形的外角和及每一个外角的度数,可求出多边形的边数,再根据题意求出正多边形的周长即可【详解】解:由题意可知,当她第一次回到出发点A时,所走过的图形是一个正多边形,由
10、于正多边形的外角和是360,且每一个外角为20,3602018,所以它是一个正18边形,因此所走的路程为18354(m),故选:C【点睛】本题考查了多边形的内角与外角,能熟记多边形的外角和定理是解此题的关键,注意:多边形的外角和=3605、C【分析】根据多边形的内角求出多边形的一个外角,然后根据多边形外角和等于,计算即可【详解】解:一个多边形的每个内角都是144,这个多边形的每个外角都是(180144)36,这个多边形的边数3603610故选:C【点睛】本题考查了多边形的外角和,熟知多边形外角和等于是解本题的关键6、C【分析】如图,连接 记过的直线交于 则为的中点,再证明 可得 从而可得答案.
11、【详解】解:如图,连接 记过的直线交于 为ABCD的对称中心,为的中点, 同理: 所以针头扎在甲、乙两个区域的可能性的大小是一样的,故选C【点睛】本题考查的是全等三角形的判定与性质,平行四边形的性质,随机事件发生的可能性的大小,几何概率的意义,理解几何概率的意义是解本题的关键.7、C【分析】根据多边形的外角和等于360度得到15n360,然后解方程即可【详解】解:n边形的每个外角都为15,15n360,n24故选C【点睛】本题考查了多边形外角和,熟练掌握多边形外角和为360度是解题的关键8、B【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,由此求解即可【详
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 强化 训练 北师大 八年 级数 下册 第六 平行四边形 定向 测评 试题 答案 解析
限制150内