2022年强化训练沪科版九年级数学下册第24章圆综合测评练习题(含详解).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年强化训练沪科版九年级数学下册第24章圆综合测评练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年强化训练沪科版九年级数学下册第24章圆综合测评练习题(含详解).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形内接于,如果它的一个外角,那么的度数为( )ABCD2、如图,ABC中,ACB90,ABC40将ABC绕点
2、B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )A50B70C110D1203、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是( )AB1C2D4、下列语句判断正确的是()A等边三角形是轴对称图形,但不是中心对称图形B等边三角形既是轴对称图形,又是中心对称图形C等边三角形是中心对称图形,但不是轴对称图形D等边三角形既不是轴对称图形,也不是中心对称图形5、如图,在中,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )ABCD6、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的
3、最小值是( )A60B90C120D1807、计算半径为1,圆心角为的扇形面积为( )ABCD8、将一把直尺、一个含60角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )A6BC3D9、在ABC中,点O为AB中点以点C为圆心,CO长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离D不确定10、如图,在中,将绕点C逆时针旋转90得到,则的度数为( )A105B120C135D150第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是由绕点O顺时针旋转30后得
4、到的图形,若点D恰好落在AB上,且的度数为100,则的度数是_2、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为_cm,直角三角形的面积是_3、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为_(结果保留)4、如图,将ABC绕点A顺时针旋转得到ADE,若DAE=110,B=40,则C的度数为_5、一个正多边形的中心角是,则这个正多边形的边数为_三、解答题(5小题,每小题10分,共计50分)1、如图,AB是的直径,CD是的一条弦,且于点E(1)求证:;(2)若,求的半径2、解题与遐想如图,RtABC的内切圆与斜边AB相切
5、于点D,AD4,BD5求RtABC的面积王小明:这道题算出来面积刚好是20,太凑巧了吧刚好是4520,有种白算的感觉赵丽华:我把4和5换成m、n再算一遍,ABC的面积总是mn!确实非常神奇了数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了我怎么想不出来呢?计算验证(1)通过计算求出RtABC的面积拼图演绎(2)将RtABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明尺规作图(3)尺规作图:如图,点D在线段AB上
6、,以AB为斜边求作一个RtABC,使它的内切圆与斜边AB相切于点D(保留作图的痕迹,写出必要的文字说明)3、如图,在中,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且将线段AE绕点A逆时针旋转90,得到线段AF,连接BE,FE,连接FC并延长交BE于点G(1)依题意补全图形;(2)求的度数;(3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明4、如图,AB是O的直径,点C是O上一点,连接BC,半径OD弦BC(1)求证:弧AD=弧CD;(2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若O的半径为5,BC=6,求CD和EF的长5、在平面直角坐标系xOy中
7、,对于点P,O,Q给出如下定义:若OQPOPQ且PO2,我们称点P是线段OQ的“潜力点”已知点O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_;(2)若点P在直线yx上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;(3)直线y2xb与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点”时,直接写出b的取值范围-参考答案-一、单选题1、D【分析】由平角的性质得出BCD=116,再由内接四边形对角互补得出A=64,再由圆周角定理即可求得BOD=2A=128【详解】四边形内接于又故选:D【点睛】本题考查了圆内接四边形的
8、性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半2、B【分析】根据旋转可得,得【详解】解:,将绕点逆时针旋转得到,使点的对应点恰好落在边上,故选:B【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质3、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可
9、【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=5=2.5,MG=CG=,HN=,故选A【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点4、A【分析】根据等边三角形的对称性判断即可【详解】等边三角形是轴对
10、称图形,但不是中心对称图形,B,C,D都不符合题意;故选:A【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键5、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解【详解】解:连接CD,如图所示:点D是AB的中点,在RtACB中,由勾股定理可得;故选D【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键6、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做
11、旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120故选C【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键7、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键8、D【分析】如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知OCA=OBA=90,OC=OB,即可证明RtOCARtOBA得到OAC=OAB,则,AOB=30,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 强化 训练 沪科版 九年级 数学 下册 24 综合 测评 练习题 详解
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内