[中考专题]2022年北京市顺义区中考数学历年高频真题专项攻克-B卷(含答案及详解).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《[中考专题]2022年北京市顺义区中考数学历年高频真题专项攻克-B卷(含答案及详解).docx》由会员分享,可在线阅读,更多相关《[中考专题]2022年北京市顺义区中考数学历年高频真题专项攻克-B卷(含答案及详解).docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年北京市顺义区中考数学历年高频真题专项攻克 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,E为正方形ABCD边AB上一动点(不与A重合)
2、,AB4,将DAE绕着点A逆时针旋转90得到BAF,再将DAE沿直线DE折叠得到DME下列结论:连接AM,则AMFB;连接FE,当F,E,M共线时,AE44;连接EF,EC,FC,若FEC是等腰三角形,则AE44,其中正确的个数有()个A3B2C1D02、已知关于x的不等式组的解集是3x4,则a+b的值为()A5B8C11D93、在0,1.333,3.14中,有理数的个数有( )A1个B2个C3个D4个4、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:;抛物线与轴的另一个交点的坐标为;方程有两个不相等的实数根其中正确的个数为( )A个B个C个D个5、下列计算正
3、确的是( )ABCD6、二次函数的图象经过点,则,的大小关系正确的为( )ABCD7、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )mABCD2008、某商品原价为 200 元,连续两次平均降价的百分率为 a ,连续两次降价后售价为 148 元, 下 线 封 密 内 号学级年名姓 线 封 密 外 面所列方程正确的是 ( )A200(1 + a)2 = 148B200(1 - a)2 = 148C200(1 - 2a)2 = 148D200(1 - a 2)= 1489、下列命题中,真命题是()A同位角相等B有两条边对应相等的等腰三
4、角形全等C互余的两个角都是锐角D相等的角是对顶角10、已知4个数:,其中正数的个数有( )A1B C3D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、比较大小:7_8(填入”或“”号)2、等腰三角形ABC中,项角A为50,点D在以点A为圆心,BC的长为半径的圆上,若BD=BA,则DBC的度数为_3、不等式的最大整数解是_4、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化甲品种水果的平均亩
5、产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为_5、多项式x3-4x2y326的次数是_三、解答题(5小题,每小题10分,共计50分)1、(1)解方程3(x+1)8x+6;(2)解方程组2、如图,数轴上A、B、C三点所对应的数分别是a、b、c且a、b、c满足|a24|(b10)2(c10)20(1)则a_,b_,c_(2)有一动点P从点A出发,以每秒4个单位的速度向右运
6、动经过t秒后,点P到点A、B、C的距离和是多少(用含t的代数式表示)?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P,Q,T所对应的数分别是xP,xQ,xT,点Q出发的时间为t,当t时,求的值3、如图,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2(1)求原正方形空地的边长;(2)在实际建造时,从校园美观和实用的角度考虑,按图的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的
7、两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度 线 封 密 内 号学级年名姓 线 封 密 外 4、规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为A,B的“三倍距点”,当CB=3CA时,我们称C为B,A的“三倍距点”点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b5|=0(1) a=_,b=_;(2)若点C在线段AB上,且为A,B的“三倍距点”,则点C所表示的数为_;(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为t秒当点B为M,N两点的“三倍距点”时,求t的值5
8、、计算:(1)(2)-参考答案-一、单选题1、A【分析】正确,如图1中,连接AM,延长DE交BF于J,想办法证明BFDJ,AMDJ即可;正确,如图2中,当F、E、M共线时,易证DEA=DEM=67.5,在MD上取一点J,使得ME=MJ,连接EJ,设AE=EM=MJ=x,则EJ=JD=x,构建方程即可解决问题;正确,如图3中,连接EC,CF,当EF=CE时,设AE=AF=m,利用勾股定理构建方程即可解决问题【详解】解:如下图,连接AM,延长DE交BF于J,四边形ABCD是正方形,AB=AD,DAE=BAF=90,由题意可得AE=AF,BAFDAE(SAS),ABF=ADE,ADE+AED=90,
9、AED=BEJ,BEJ+EBJ=90,BJE=90,DJBF,由翻折可知:EA=EM,DM=DA,DE垂直平分线段AM,BFAM,故正确;如下图,当F、E、M共线时,易证DEA=DEM=67.5,在MD上取一点J,使得ME=MJ,连接EJ, 线 封 密 内 号学级年名姓 线 封 密 外 则由题意可得M=90,MEJ=MJE=45,JED=JDE=22.5,EJ=JD,设AE=EM=MJ=x,则EJ=JD=x,则有x+x =4,x=44,AE=44,故正确;如下图,连接CF,当EF=CE时,设AE=AF=m,则在BCE中,有2m=4+(4-m)2,m=44或-44 (舍弃),AE=44,故正确;
10、故选A【点睛】本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题2、C【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可【详解】解:解不等式x-a1,得:xa+1,解不等式x+5b,得:xb-5,不等式组的解集为3x4,a+1=3,b-5=4,a=2,b=9,则a+b=2+9=11,故选:C【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键3、D
11、【分析】根据有理数的定义:整数和分数统称为有理数,进行求解即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:0是整数,是有理数;是无限不循环小数,不是有理数;是分数,是有理数;是分数,是有理数;3.14是有限小数,是分数,是有理数,故选D【点睛】此题考查有理数的定义,熟记定义并运用解题是关键4、C【分析】根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断【详解】解:如图,开口向上,得,得,抛物线与轴交于负半轴,即,故错误;如图,抛物线与轴有两个交点,则;故正确;由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,故正确;如图所示,当时,根的
12、个数为与图象的交点个数,有两个交点,即有两个根,故正确;综上所述,正确的结论有3个故选:C【点睛】主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用5、D【分析】直接根据合并同类项运算法则进行计算后再判断即可【详解】解:A. ,选项A计算错误,不符合题意;B. ,选项B计算错误,不符合题意;C. ,选项C计算错误,不符合题意;D. ,计算正确,符合题意 线 封 密 内 号学级年名姓 线 封 密 外 故选:D【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键6、B【分析
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考专题 中考 专题 2022 北京市 顺义区 数学 历年 高频 专项 攻克 答案 详解
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内