2022年精品解析北师大版九年级数学下册第二章二次函数综合练习试卷(名师精选).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年精品解析北师大版九年级数学下册第二章二次函数综合练习试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版九年级数学下册第二章二次函数综合练习试卷(名师精选).docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第二章二次函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知抛物线经过,若时,则,的大小关系是( )ABCD2、如图,线段AB5,动点P以每秒1个单位长度的速度从点A出
2、发,沿线段AB运动至点B,以点A为圆心,线段AP长为半径作圆设点P的运动时间为t,点P,B之间的距离为y,A的面积为S,则y与t,S与t满足的函数关系分别是( )A正比例函数关系,一次函数关系B一次函数关系,正比例函数关系C一次函数关系, 二次函数关系D正比例函数关系,二次函数关系3、已知二次函数(m为常数),当时,函数值y的最小值为-2,则m的值为( )AB或C或D或4、若点在二次函数的图象上,则下列各点中,一定在二次函数图象上的是( )ABCD5、对于二次函数的图象的特征,下列描述正确的是( )A开口向上B经过原点C对称轴是y轴D顶点在x轴上6、如图,已知点A、B在反比例函数y(k0,x0
3、)的图象上,点P沿CABO的路线(图中“”所示路线)匀速运动,过点P作PMx轴于点M,设点P的运动时间为t,POM的面积为S,则S关于t的函数图象大致为()ABCD7、抛物线y(x2)23的顶点坐标是( )A(2,3)B(2,3)C(2,3)D(2,3)8、已知二次函数的图象如图所示,则下列结论正确的是( )ABCD9、若关于x的二次函数,当时,y随x的增大而减小,且关于y的分式方程有整数解,则符合条件的所有整数a的和为( )A1BC8D410、已知二次函数中的与的部分对应值如下表所示012131根据表中的信息,给出下列四个结论:抛物线的对称轴是直线;抛物线的顶点坐标是;当时,的值为;若点,点
4、两个点都在抛物线上,则其中正确结论的个数是( )A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知二次函数,当时,的取值范围为_2、抛出的一小球飞行的高度y与飞行时间x之间满足:,则该小球第2秒时的高度与第_秒时的高度相同3、点A(x1,y1),B(x2,y2)(x1x20)是y=ax2(a0)图象上的点,存在=1时,=1成立,写出一个满足条件a的值_4、若二次函数配方后为,则b_, k_5、如果抛物线不经过第三象限,那么的值可以是_(只需写一个)三、解答题(5小题,每小题10分,共计50分)1、某篮球队员的一次投篮命中,篮球从出手到命中行进的
5、轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度(单位:m)与行进的水平距离(单位:m)之间关系的图象如图所示已知篮球出手位置与篮筐的水平距离为4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m(1)图中点表示篮筐,其坐标为_,篮球行进的最高点的坐标为_;(2)求篮球出手时距地面的高度2、如图,在平面直角坐标系xOy中,抛物线yax2+2xc的部分图象经过点A(0,3),B(1,0) (1)求该抛物线的解析式;(2)结合函数图象,直接写出y0时,x的取值范围3、如图,已知RtABC中,BAC30,C90,A点坐标为(1,0),B点坐标为
6、(3,0),抛物线y1的顶点记为Q,且经过ABC的三个顶点A、B、C(点A在点B左侧,点C在x轴下方)抛物线y2也交x轴于点A、B,其顶点为P(1)求C点的坐标和抛物线y1的顶点Q的坐标(2)当BP+CP的值最小时,求抛物线y2的解析式(3)设点M是抛物线y1上的一个动点,且位于其对称轴的右侧若PQM是与ABC相似的三角形,求抛物线y2的顶点P的坐标4、在平面直角坐标系xOy中,点(1,m)和(2,n)在抛物线上(1)若m0,求该抛物线的对称轴;(2)若mn0,设抛物线的对称轴为直线,直接写出的取值范围;已知点(1,y1),(,y2),(3,y3)在该抛物线上比较y1,y2,y3的大小,并说明
7、理由5、通过列表、描点、连线的方法画函数y=的图象-参考答案-一、单选题1、C【分析】由,纵坐标相同可以看出AB关于对称轴对称,即对称轴为,再结合C、D坐标可得C、D关于对称轴对称,再根据,比较m和p的大小即可【详解】,对称轴为,关于对称轴对称,即在对称轴右边当也在对称轴右边时此时由y随x的增大而减小,当在对称轴右边时此时由y随x的增大而减小,故选:C【点睛】本题考查二次函数的性质,解题的关键是根据AB纵坐标相同可以看出A、B关于对称轴对称2、C【分析】根据题意分别列出y与t,S与t的函数关系,进而进行判断即可【详解】解:根据题意得,即,是一次函数;A的面积为,即,是二次函数故选C【点睛】本题
8、考查了列函数表达式,一次函数与二次函数的识别,根据题意列出函数表达式是解题的关键3、B【分析】将二次函数配方成顶点式,分m-2、m1和-2m1三种情况,根据y的最小值为-2,结合二次函数的性质求解可得【详解】解:y=x2-2mx=(x-m)2-m2, 若m-2,当x=-2时取得最小值,此时y=4+4m=-2, 解得:m=; m=-2(舍去); 若m1,当x=1时取得最小值,y=1-2m=-2, 解得:m=; 若-2m1,当x=m时取得最小值,y=-m2=-2, 解得:或(舍), m的值为 或, 故选:B【点睛】本题主要考查二次函数的最值,根据二次函数的增减性分类讨论是解本题的关键4、A【分析】
9、先把点A代入解析式得出,函数化为,然后把各点中的x的值代入解析式求函数值,看函数值是否等于各点的纵坐标即可【详解】解:点在二次函数的图象上,当x=-4时,故选项A在二次函数图象上;当x=-2时,故选项B不在二次函数图象上;当x=0时,故选项C不在二次函数图像上;当x=2时,故选项D不在二次函数图象上故选A【点睛】本题考查二次函数图象上点的特征,求函数值,掌握二次函数图象上点的特征是解题关键5、D【分析】根据二次函数的性质判断即可【详解】在二次函数中,图像开口向下,故A错误;令,则,图像不经过原点,故B错误;二次函数的对称轴为直线,故C错误;二次函数的顶点坐标为,顶点在x轴上,故D正确故选:D【
10、点睛】本题考查二次函数的性质,掌握二次函数相关性质是解题的关键6、D【分析】分别求当点P在CA路线上运动时;当AB路线上运动时;当点P在BO路线上运动时,S关于t的函数的解析式,即可求解【详解】解:当点P在CA路线上运动时,设点P运动速度为 , ,a、OA为常数,S是关于t的一次函数,图象为自左向右上升的线段;当AB路线上运动时,保持不变,本段图象为平行于x轴的线段;当点P在BO路线上运动时,随着t的增大,点P从点B运动至点O,OM的长在减小,OPM的高PM也随之减小到0,即的图象为开口向下的抛物线的一部分故选:D【点睛】本题主要考查了动点问题的函数图象,明确题意,得到每一段的函数解析式是解题
11、的关键7、B【分析】由抛物线的顶点式y(xh)2k直接看出顶点坐标是(h,k)【详解】解:抛物线为y(x2)23,顶点坐标是(2,3)故选:B【点睛】此题主要考查二次函数顶点式,解题的关键是熟知抛物线的顶点式y(xh)2k的顶点坐标是(h,k)8、D【分析】由抛物线开口向下,得到a小于0,再由对称轴在y轴左侧,得到a与b同号,可得出b0,又抛物线与y轴交于正半轴,得到c大于0,可判断选项A;由x=-1时,对应的函数值大于0,可判断选项B;由x=-2时对应的函数值小于0,可判断选项C;由对称轴大于-1,利用对称轴公式得到b2a,可判断选项D【详解】解:由抛物线的开口向下,得到a0,-0,b0,由
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 精品 解析 北师大 九年级 数学 下册 第二 二次 函数 综合 练习 试卷 名师 精选
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内