2022年沪教版(上海)七年级数学第二学期第十二章实数达标测试练习题.docx
《2022年沪教版(上海)七年级数学第二学期第十二章实数达标测试练习题.docx》由会员分享,可在线阅读,更多相关《2022年沪教版(上海)七年级数学第二学期第十二章实数达标测试练习题.docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪教版(上海)七年级数学第二学期第十二章实数达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中错误的是()A9的算术平方根是3B的平方根是C27的立方根为D平方根等于1的数是12、下列实数
2、比较大小正确的是( )ABCD3、在3.14,中,无理数有( )A1个B2个C3个D4个4、16的平方根是()A8B8C4D45、下列判断:10的平方根是;与互为相反数;0.1的算术平方根是0.01;()3a;a2其中正确的有()A1个B2个C3个D4个6、下列说法正确的是()A是分数B0.1919919991(每相邻两个1之间9的个数逐次加1)是有理数C3x2y+4x1是三次三项式,常数项是1D单项式的次数是2,系数为7、在以下实数:,3.1411,8,0.020020002中,无理数有()A2个B3个C4个D5个8、在实数,1.12112111211112(每两 个2之间依次多一个1)中,
3、无理数有( )个A2B3C4D59、下列说法中正确的有()2都是8的立方根 x的平方根是3 2A1个B2个C3个D4个10、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数若每个小立方块的体积为216cm,则该几何体的最大高度是( )A6cmB12cmC18cmD24cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若是整数,则正整数的最小值是_2、与最接近的整数为_3、若实数满足,则=_4、的算术平方根是 _;64的立方根是 _5、如果,那么_三、解答题(10小题,每小题5分,共计50
4、分)1、计算:(1)18+(17)+7+(8);(2)(12);(3)22+|1|+2、已知:,求x17的算术平方根3、解答下列各题:(1)计算: (2)分解因式:4、观察下列等式:第1个等式:1213;第2个等式:(1+2)213+23;第3个等式:(1+2+3)213+23+33;第4个等式:(1+2+3+4)213+23+33+43;按照以上规律,解决下列问题:(1)写出第5个等式:_;(2)写出第n(n为正整数)个等式:_(用含n的等式表示);(3)利用上述规律求值:5、(1)计算(2)计算(3)解方程(4)解方程组6、将下列各数填入相应的横线上:整数: 有理数: 无理数: 负实数:
5、7、求下列各式中的x:(1);(2)8、计算:9、(1)计算:;(2)分解因式:10、计算:-参考答案-一、单选题1、C【分析】根据平方根,算术平方根,立方根的性质,即可求解【详解】解:A、9的算术平方根是3,故本选项正确,不符合题意;B、因为 ,4的平方根是 ,故本选项正确,不符合题意;C、27的立方根为3,故本选项错误,符合题意;D、平方根等于1的数是1,故本选项正确,不符合题意;故选:C【点睛】本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键2、D【分析】根据有理数比较大小的法则对各选项进行比较即可【详解】解:A、1-4,故本选项错误;
6、B、-1000-0.001,故本选项错误;C、,故本选项错误;D、,故本选项正确;故选:D【点睛】本题考查的是实数的大小比较,即正数都大于0;负数都小于0;正数大于一切负数; 两个负数,绝对值大的其值反而小3、C【分析】分别根据无理数、有理数的定义即可判定选择项【详解】解:3.14是有理数,是无理数,是无理数,是有理数,是有理数,是无理数,是有理数,是有理数;无理数有三个,故选C【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,0.8080080008(每两个8之间依次多1个0)等形式4、D【分析】根据平方根可直接进行求解【详解】解:(4)216,
7、16的平方根是4故选:D【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键5、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错【详解】解:10的平方根是,正确;是相反数,正确;0.1的算术平方根是,故错误;()3a,正确;a2,故错误;正确的是,有3个故选:C【点睛】本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根6、D【分析】根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可【详解】解:A、是无限不循环小数,不是分数,故此选项不符合题意;B、0.1919919991(每
8、相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;C、3x2y+4x1是三次三项式,常数项是-1,故此选项不符合题意;D、单项式的次数是2,系数为,故此选项符合题意;故选D【点睛】本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数7、B【分析】根据“无
9、限不循环的小数是无理数”可直接进行排除选项【详解】解:,在以下实数:,3.1411,8,0.020020002中,无理数有,0.020020002;共3个;故选B【点睛】本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键8、C【分析】利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数【详解】有理数有:,一共四个无理数有:,1.12112111211112(每两 个2之间依次多一个1),一共四个故选:C【点睛】此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年沪教版 上海 七年 级数 第二 学期 第十二 实数 达标 测试 练习题
限制150内