2022年必考点解析沪科版九年级数学下册第24章圆综合测试试题.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年必考点解析沪科版九年级数学下册第24章圆综合测试试题.docx》由会员分享,可在线阅读,更多相关《2022年必考点解析沪科版九年级数学下册第24章圆综合测试试题.docx(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,DC是O的直径,弦ABCD于M,则下列结论不一定成立的是()AAM=BMBCM=DMCD2、等边三角形、等腰三角
2、形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )A2个B3个C4个D5个3、如图,在Rt中,以点为圆心,长为半径的圆交于点,则的长是( )A1BCD24、如图,在RtABC中,点D、E分别是AB、AC的中点将ADE绕点A顺时针旋转60,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:AECADB;CP存在最大值为;BP存在最小值为;点P运动的路径长为其中,正确的( )ABCD5、如图,CD是的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点(2)作直线GH交AB于点E(3)在直线GH上截取(4)以点F为圆心,AF长为半径画圆交CD
3、于点P则下列说法错误的是( ) ABCD6、如图,在RtABC中,ACB90,A30,BC2将ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )A3B1CD7、如图,在中,将绕点A顺时针旋转60得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )A1B2C3D48、下列图形中,是中心对称图形的是( )ABCD9、如图,点A、B、C在上,则的度数是( )A100B50C40D2510、如图,与的两边分别相切,其中OA边与相切于点P若,则OC的长为( )A8BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计2
4、0分)1、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为_(结果保留)2、一条弧所对的圆心角为,弧长等于,则这条弧的半径为_3、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则BDC的度数为_4、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为_5、如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函数关联的二次
5、函数如果一次函数的关联二次函数是(),那么这个一次函数的解析式为_三、解答题(5小题,每小题10分,共计50分)1、如图,抛物线yx2与x轴负半轴交于点A,与y轴交于点B(1)求A,B两点的坐标;(2)如图1,点C在y轴右侧的抛物线上,且ACBC,求点C的坐标;(3)如图2,将ABO绕平面内点P顺时针旋转90后,得到DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上 求点F的坐标;直接写出点P的坐标 2、如图,在等边三角形ABC中,点P为ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60得到 ,连接 (1)用等式表示 与CP的数量关系,并证明;(2)当
6、BPC120时, 直接写出 的度数为 ;若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明3、在等边中,将线段AB绕点A顺时针旋转得到线段AD(1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F依题意补全图形;用等式表示线段AE,AF,CE之间的数量关系,并证明4、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等由圆周角定理,可以得到以下推论:推论1 90的圆周角所对
7、的弦是直径(如图)(推论证明)已知:ABC的三个顶点都在O上,且ACB90 求证:线段AB是O的直径 请你结合图写出推论1的证明过程(深入探究)如图,点A,B,C,D均在半径为1的O上,若ACB90,ACD60则线段AD的长为 (拓展应用)如图,已知ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE 若AB,则DE的长为 5、如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O三点在一条直线上记点D1的坐标是(m,n),C1的坐标是(
8、p,q)(1)设DAD130,n2,求证:OD1的长度;(2)若DAD190,m,n满足m+n4,p2+q225,求p+q的值-参考答案-一、单选题1、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得【详解】解:弦ABCD,CD过圆心O,AM=BM,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理2、A【分析】根据轴对称图形与中心对称图形的概念进行判断【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图
9、形,不符合题意;共2个既是轴对称图形又是中心对称图形故选:A【点睛】此题主要考查了中心对称图形与轴对称图形的概念(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴(2)如果一个图形绕某一点旋转180后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心3、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CEAB于E,利用,求出BE,根据垂径定理求出BD即可得到答案【详解】解: 在Rt中,BC=3,连接CD,过点C作CEAB于E, 解得,CB=CD,CEAB,故选:B【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,
10、熟记各定理并熟练应用是解题的关键4、B【分析】根据,点D、E分别是AB、AC的中点得出DAE=90,AD=AE=,可证DAB=EAC,再证DABEAC(SAS),可判断AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,根据AECADB,得出DBA=ECA,可证P=BAC=90,CP为A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在RtAEC中,CE=,可判断CP存在最大值为正确;AECADB,得出BD=CE=,在RtBPC中,BP最小=可判断BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90,BP=CO=AO=,当AE
11、CP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,可求ACE=30,根据圆周角定理得出AOP=2ACE=60,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,可得ABD=30根据圆周角定理得出AOP=2ABD=60,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断点P运动的路径长为正确即可【详解】解:,点D、E分别是AB、AC的中点DAE=90,AD=AE=,DAB+BAE=90,BAE+EAC=90,DAB=EAC,在DAB和EAC中,DABEAC(SAS),故AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最
12、大,AECADB,DBA=ECA,PBA+P=ECP+BAC,P=BAC=90,CP为A的切线,AECP,DPE=PEA=DAE=90,四边形DAEP为矩形,AD=AE,四边形DAEP为正方形,PE=AE=3,在RtAEC中,CE=,CP最大=PE+EC=3+,故CP存在最大值为正确;AECADB,BD=CE=,在RtBPC中,BP最小=,BP最短=BD-PD=-3,故BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,ACE=30,AOP=2ACE=60,当ADBP
13、时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,ABD=30,AOP=2ABD=60,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,POP=POA+AOP=60+60=120,L故点P运动的路径长为正确;正确的是故选B【点睛】本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键5、C【分析】连接AF、BF,由作法可知,FE垂直平分AB,再根据可得AFE=45,进而得出AFB90,根据等腰直角三角形和圆周角定理可判断哪个结论正确【详解】解:连接AF、BF,由作法可
14、知,FE垂直平分AB,故A正确;CD是的高,故B正确;,故C错误;,AFE=45,同理可得BFE=45,AFB90,故D正确;故选:C【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明6、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键7
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 必考 解析 沪科版 九年级 数学 下册 24 综合测试 试题
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内