2022年强化训练京改版九年级数学下册第二十五章-概率的求法与应用专项攻克试卷(含答案详解).docx
《2022年强化训练京改版九年级数学下册第二十五章-概率的求法与应用专项攻克试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年强化训练京改版九年级数学下册第二十五章-概率的求法与应用专项攻克试卷(含答案详解).docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、九年级数学下册第二十五章 概率的求法与应用专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将分别标有“中”“国”“加”“油”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球
2、前先搅拌均匀随机摸出一球,不放回;再随机摸出一球两次摸出的球上的汉字能组成“加油”的概率是( )ABCD2、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9150.9050.8970.902A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B可以用试验次数累计最多时的频率作为概率的估计值C由此估计这种幼苗在此条件下成活的概率约为0.9D如
3、果在此条件下再移植这种幼苗20000株,则必定成活18000株3、在一个不透明的纸箱中,共有个蓝色、红色的玻璃球,它们除颜色外其他完全相同小柯每次摸出一个球后放回,通过多次摸球试验后发现摸到蓝色球的频率稳定在,则纸箱中红色球很可能有( )A个B个C个D个4、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是()ABCD5、同时抛掷两枚质地均匀的硬币,出现两个正面朝上的概率是()ABCD6、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为().ABCD17、经过某十字路口的汽车,
4、可能直行,也可能向左转或向右转如果这三种可能性大小相同,甲、乙两辆汽车经过这个十字路口时,一辆车向左转,一辆车向右转的概率是( )ABCD8、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5220.5190.5210.520下面有3个推断:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在0.520
5、附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次其中所有合理推断的序号是( )ABCD9、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是( )ABCD10、在一个不透明的袋中装有只有颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后再重复上述步骤;如表是实验中记录的部分统计数据:摸球次数40506080100200摸到红球次数191013162040则袋中的红球可能有()A8个B6个C4个D2个
6、第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,则小明正好穿的是相同的一双袜子的概率是_2、四张背面相同的扑克牌,分别为红桃1,2,3,4,背面朝上,先从中抽取一张把抽到的点数记为a,再在剩余的扑克中抽取一张点数记为b,则以为坐标的点在直线上的概率为_3、在不透明的袋中装有仅颜色不同的一个红球和一个蓝球,从此袋中随机摸出一个小球,然后放回,再随机摸出一个小球,则两次摸出的球颜色不同的概率是_4、有四张正面分别标有数字-4,-3,-2,1,的不透明卡片,它们除数字不同外其他全部相同,现
7、将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为,则使得二次函数当时随的增大而减小,且一元二次方程有两个不相等的实数根的概率是_5、在平面直角坐标系中,横坐标,纵坐标都为整数的点称为整点,正方形边长的整点称为边整点,如图,第一个正方形有4个边整点,第二个正方形有8个边整点,第三个正方形有12个边整点按此规律继续作下去,若从内向外共作了5个这样的正方形,那么其边整点的个数共有_个,这些边整点落在函数的图象上的概率是 _三、解答题(5小题,每小题10分,共计50分)1、圣诞节快到了,已知东方商城推出A,B,C,D四种礼盒套餐,甲乙两人任选其中一种购买(1)甲从中随机选取A套餐的概率是 ;(
8、2)甲乙分别选取一种套餐,请画出树状图(或列表),并求甲、乙2人选取相同套餐的概率2、疫情期间,渤海中学进行了一次线上数学学情调查,九年级(1)班数学李老师对成绩进行分析,绘制成尚不完整的统计图表,如图(1) ,类所在扇形的圆心角的度数是 ,并补全频数分布直方图;(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩在范围内的学生人数;(3)九年级(1)班数学李老师准备从类优生的6人中随机抽取2人进行线上学习经验交流,已知这6人中有2名是无家长管理的留守学生,求恰好只选中其中1名留守学生进行经验交流的概率类别分数段频数(人数)AB16C24D63、安全使用电瓶车可以大幅减少因交通事故引
9、发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动在活动中随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,共四个选项(A每天戴;B经常戴;C偶尔戴;D都不戴),每个人必选且只能选择其中一项,现将调查结果绘制成不完整的统计表:选项ABCD频数a600500200频率35%30%bc(1)填空:a ;b ;c (2)根据调查结果,估计该市10000名市民中都不戴头盔的有多少人?(3)为鼓励市民积极配戴安全帽,现交警部门从每天戴安全帽的甲、乙、丙、丁四个市民中选择2个给予奖励,请你用画树状图或列表的方法求甲、乙两个市民被选中的概率4、甲、乙两名同学分别从武汉日夜
10、、大红包、吉祥如意三部电影中随机选择一部观看(1)甲同学选择武汉日夜的概率是 ;(2)求甲、乙两名同学恰好选择同一部电影的概率(请用“画树状图”或“列表”等方法写出分析过程)5、有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球(1)求两次摸出的球的标号相同的概率;(2)求两次摸出的球的标号的和等于4的概率-参考答案-一、单选题1、B【分析】列表得出所有等可能的情况数,找出能组成“加油”的情况数,再利用概率公式计算即可【详解】解:根据题意可列表如下:中国加油中中、国中、加中、油国国、中国、加国、油加加、中加、国加、油油油、中油
11、、国油、加一共有43=12种可能,其中能组成“加油”的有2种,两次摸出的球上的汉字能组成“加油”的概率是故选:B【点睛】本题考查了列表法或树状图法求概率,根据题意列出所有等可能结果是解题关键2、D【分析】根据频率估计概率逐项判断即可得【详解】解:A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D【点睛】本题考
12、查了频率估计概率,掌握理解利用频率估计概率是解题关键3、D【分析】根据利用频率估计概率得到摸到蓝色球的概率为20%,由此得到摸到红色球的概率=1-20%=80%,然后用80%乘以总球数即可得到红色球的个数【详解】解:摸到蓝色球的频率稳定在20%,摸到红色球的概率=1-20%=80%,不透明的布袋中,有黄色、白色的玻璃球共有15个,纸箱中红球的个数有1580%=12(个)故选:D【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率4、B【分析】用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 强化 训练 改版 九年级 数学 下册 第二 十五 概率 求法 应用 专项 攻克 试卷 答案 详解
链接地址:https://www.taowenge.com/p-28162621.html
限制150内