2022年最新强化训练北师大版八年级数学下册第六章平行四边形同步练习试题(名师精选).docx
《2022年最新强化训练北师大版八年级数学下册第六章平行四边形同步练习试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练北师大版八年级数学下册第六章平行四边形同步练习试题(名师精选).docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版八年级数学下册第六章平行四边形同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列条件中能判定四边形ABCD是平行四边形的是( )AAB=BC,AD=DCBABCD,AD=BCCABCD
2、,B=DDA=B,C=D2、如图,桐桐从A点出发,前进3m到点B处后向右转20,再前进3m到点C处后又向右转20,这样一直走下去,她第一次回到出发点A时,一共走了( )A100mB90mC54mD60m3、如图,四边形ABCD中,A=60,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )ABCD4、如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OEAC交AD于E,则DCE的周长为( )A4B6C8D105、下列图形中,内角和为的多边形是( )ABCD6、在平面直角坐标系中,平行四边形
3、ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )A(7,3)B(8,2)C(3,7)D(5,3)7、如图,正五边形ABCDE的对角线AC、BD交于点P,那么( )A96B100C108D1158、如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,顶点B的坐标为(8,6).若直线l经过点(2,0),且直线l将平行四边形OABC分割成面积相等的两部分,则直线l对应的函数解析式是( )Ayx2By3x6CD9、一个正多边形的外角与相邻的内角的度数之比为1:3,则这个多边形的边数是( )A8B9C6D510、如图,小明从A点出发,沿直线前进10
4、米后向左转36,再沿直线前进10米,再向左转36照这样走下去,他第一次回到出发点A点时,一共走的路程是()A180米B110米C120米D100米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在四边形ABCD中,A110,C80,将BMN沿MN翻折,得到FMN若MFAD,FNDC,则D的度数为 _2、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_3、如图,在四边形中,分别是的中点,分别以为直径作半圆,这两个半圆面积的和为,则的长为_4、如图,ABC中,D是BC中点,AE平分BAC,AEBE,AB=3,AC=5,则DE=_5、如图,在平行四边形ABC
5、D中,E、F分别在CD和BC的延长线上,则_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,点A(x,m)在第四象限,A,B两点关于x轴对称,x+n(n为常数),点C在x轴正半轴上,(1)如图1,连接AB,直接写出AB的长为 ;(2)延长AC至D,使CDAC,连接BD如图2,若OAAC,求线段OC与线段BD的关系;如图3,若OCAC,连接OD点P为线段OD上一点,且PBD45,求点P的横坐标2、在等腰直角三角形ABC中,点E、F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90得到AG,连接GC,HB(1)如图1,求
6、证:;(2)如图2,连接GF,HG,HG交AF于点Q点H在运动的过程中,求证:;若,当为等腰三角形时,EH的长为_3、如图,AOB是等腰直角三角形(1)若A(4,1),求点B的坐标;(2)ANy轴,垂足为N,BMy轴,垂足为点M,点P是AB的中点,连PM,求PMO度数;(3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQAM4、如图1,在中,点,分别在边,上,连接,点,分别为,的中点(1)观察猜想:图1中,线段与的数量关系是_,位置关系是_(2)探究证明:把绕点逆时针方向旋转到图2的位置,连接,判断的形状,并说明理由5、和都是等腰直角三角形, (1)如图,点在线段上,点在线段上,请直接
7、写出线段与线段的数量关系:_;(2)如图,将图中的绕点逆时针旋转,旋转角为(),请判断并证明线段与线段的数量关系;(3)将图中的绕点逆时针旋转,旋转角为(),若,在旋转的过程中,当以,四点为顶点的四边形是平行四边形时,请直接写出旋转角的度数-参考答案-一、单选题1、C【分析】根据两组对角分别相等的四边形是平行四边形进行判断即可【详解】解:能判定四边形ABCD是平行四边形的是ABCD,B=D,理由如下:ABCD,B+C=180,B=D,D+C=180, ADBC,四边形ABCD是平行四边形,故选:C【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键2、C【分析】根据多边
8、形的外角和及每一个外角的度数,可求出多边形的边数,再根据题意求出正多边形的周长即可【详解】解:由题意可知,当她第一次回到出发点A时,所走过的图形是一个正多边形,由于正多边形的外角和是360,且每一个外角为20,3602018,所以它是一个正18边形,因此所走的路程为18354(m),故选:C【点睛】本题考查了多边形的内角与外角,能熟记多边形的外角和定理是解此题的关键,注意:多边形的外角和=3603、A【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值 连接DB,过点D作DHAB交AB于点H,再利用
9、直角三角形的性质和勾股定理求解即可;【详解】解:ED=EM,MF=FN, EF=DN, DN最大时,EF最大, N与B重合时DN=DB最大,在RtADH中, A=60 AH=2=1,DH=,BH=ABAH=31=2, DB=, EFmax=DB=, EF的最大值为故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键4、C【分析】先证明AEEC,再求解AD+DC8,再利用三角形的周长公式进行计算即可.【详解】解:平行四边形ABCD,ADBC,ABCD,OAOC,EOAC,AEEC,AB+BC+CD+AD16,AD+DC8,DCE
10、的周长是:CD+DE+CEAE+DE+CDAD+CD8,故选:C【点睛】本题考查的是平行四边形性质,线段垂直平分线的性质,证明AEEC是解本题关键.5、C【分析】利用多边形的内角和公式求出多边形的边数,由此即可得出答案【详解】解:设这个多边形的边数是,则,解得,故选:C【点睛】本题考查了多边形的内角和,熟练掌握多边形的内角和是解题关键6、A【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D点和C点的纵坐标相等,再求出CD=AB=5,得到C点横坐标,最后得到C点的坐标【详解】解: 四边形ABCD为平行四边形。且。C点和D的纵坐标相等,都为3A点坐标为(0,0),B点坐标为(5,
11、0), D点坐标为(2,3),C点横坐标为, 点坐标为(7,3)故选:A【点睛】本题主要是考察了平行四边形的性质、利用线段长求点坐标,其中,熟练应用平行四边形对边平行且相等的性质,是解决与平行四边形有关的坐标题的关键7、C【分析】先根据正多边形的内角和求出的度数,再根据三角形的内角和定理可得的度数,同样的方法可得的度数,然后根据三角形的内角和定理、对顶角相等即可得【详解】解:五边形是正五边形,同理可得:,故选:C【点睛】本题考查了正多边形的内角和,熟练掌握正多边形的内角和是解题关键8、C【分析】根据直线l将平行四边形OABC分割成面积相等的两部分,可得直线l过OB的中点,又根据中点公式可得OB
12、的中点为,然后设直线l的解析式为,将点(2,0), 代入,即可求解【详解】解:直线l将平行四边形OABC分割成面积相等的两部分,直线l过平行四边形的对称中心,即过OB的中点,顶点B的坐标为(8,6), ,即,设直线l的解析式为,将点(2,0), 代入,得:,解得:,直线l的解析式为,故选:C【点睛】本题主要考查了求一次函数解析式,平行四边形的性质,明确题意,得到直线l过平行四边形的对称中心是解题的关键9、A【分析】设每个内角与它相邻的外角的度数分别为3x、x,根据邻补角的定义得到x3x180,解出x45,然后根据多边形的外角和为360即可计算出多边形的边数【详解】解:设每个内角与它相邻的外角的
13、度数分别为3x、x,x3x180,x45,故这个多边形的边数8故选:A【点睛】本题考查了多边形的外角定理:多边形的外角和为360也考查了邻补角的定义10、D【分析】根据题意,小明走过的路程是正多边形,先用360除以36求出边数,然后再乘以10m即可【详解】解:每次小明都是沿直线前进10米后向左转36,他走过的图形是正多边形,边数n=36036=10,他第一次回到出发点A时,一共走了1010=100米故选:D【点睛】本题考查了多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题的关键二、填空题1、【分析】根据平行线的性质可得,由折叠的性质可得,再根据四边形内角和即可求解【详解】解:M
14、FAD,FNDC,由折叠的性质可得,四边形内角和的性质可得,故答案为:【点睛】此题考查了四边形内角和的性质,涉及了平行线以及折叠的性质,解题的关键是灵活运用相关性质进行求解2、144度【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案【详解】解:四边形的四个外角的度数之比为1:2:3:4,四个外角的度数分别为:360;360;360;360;它最大的内角度数为:故答案为:144【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360,从而进行计算3、4【分析】根据题意连接BD,取BD的中点M,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 强化 训练 北师大 八年 级数 下册 第六 平行四边形 同步 练习 试题 名师 精选
限制150内