2022年沪科版八年级下册数学综合训练-(B)卷(含答案及详解).docx
《2022年沪科版八年级下册数学综合训练-(B)卷(含答案及详解).docx》由会员分享,可在线阅读,更多相关《2022年沪科版八年级下册数学综合训练-(B)卷(含答案及详解).docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版八年级下册数学综合训练 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有100
2、人患病,设每轮传染中平均一个人传染了x个人,下列列式正确是( )Ax+x(1+x)100B1+x+x2100C1+x+x(1+x)100Dx(1+x)1002、甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是9.1环,四人的方差分别是S甲20.63,S乙22.56,S丙20.49,S丁20.46,则射箭成绩最稳定的是( )A甲B乙C丙D丁3、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )ABCD4、如图已知:四边形ABCD是平行四边形,下列结论中不正确的是 ( )A当AB=BC时,它是菱形B当ACBD时,它
3、是菱形C当AC=BD时,它是正方形D当ABC=时,它是矩形5、如图,在长方形ABCD中,分别按图中方式放入同样大小的直角三角形纸片如果按图方式摆放,刚好放下4个;如果按图方式摆放,刚好放下3个若BC4a,则按图方式摆放时,剩余部分CF的长为( )ABCD6、若a2021202220212,b1013100810121007,c,则a,b,c的大小关系是()AcbaBacbCbacDbca7、如图1,在中,M是的中点,设,则表示实数a的点落在数轴上(如图2)所标四段中的( )A段B段C段D段8、如图,矩形ABCD中,AB2BC,点E在CD上,AEAB,则ABE的度数为() 线 封 密 内 号学级
4、年名姓 线 封 密 外 A60B70C72D759、如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PEAC于点E,PFBD于点F若AB=6,BC=8,则PE+PF的值为( )A10B9.6C4.8D2.410、方程的两个根为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、平行四边形ABCD中,BAD的平分线交BC边于点E,ADC的平分线交BC边于点F,AB=5, EF=1,则BC=_ 2、观察下列各式的特点:,;,计算:+_3、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_4、如图是一株美丽的勾股树
5、,其中所有的四边形都是正方形,所有的三角形都是直角5、方程x(x5)7(x5)的解是_三、解答题(5小题,每小题10分,共计50分)1、计算(1)计算:(2)解方程:2、已知:如图,四边形ABCD中,ABBC,AB1,BC2,CD2,AD3,(1)求AC的长;(2)求证:ACD是直角三角形;(3)四边形ABCD的面积3、(1)阅读理解我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作周髀算经中汉代数学家赵爽为了证明勾股定理,创制了一幅如图所示的“弦图”,后人称之为“赵爽弦图”根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决勾股定理的证明方法有很多,如图是古代的一种证明方法:过
6、正方形ACDE的中心O,作FGHP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形若AC12,BC5,求EF的值 线 封 密 内 号学级年名姓 线 封 密 外 4、用适当的方法解下列方程:(1);(2)5、某校气象兴趣小组的同学们想预估一下泰安市某区域明年9月份日平均气温状况他们收集了该区域近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为 ,众数为 ;(2)求这60天的日平均气温的平均数;(3)若日平均气温在1821的范围内(包含18和21)为“舒适温度”请预估区域
7、明年9月份日平均气温为“舒适温度”的天数-参考答案-一、单选题1、C【分析】设每轮传染中平均一个人传染了x个人,则第一轮传染了x人,第二轮传染了x(1+x)人,根据经过两轮传染后有100患病,即可得出关于x的一元二次方程,此题得解【详解】解:设每轮传染中平均一个人传染了x个人,则第一轮传染了x人,第二轮传染了x(1+x)人,依题意得:1+x+x(1+x)=100故选:C【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键2、D【分析】根据方差的意义即可得【详解】解:,且,射箭成绩最稳定的是丁(方差越小,成绩越稳定),故选:D【点睛】本题考查了方差的意义
8、,掌握理解方差的意义是解题关键 线 封 密 内 号学级年名姓 线 封 密 外 3、C【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在RtEFC中利用勾股定理列出方程,通过解方程可得答案【详解】解: 矩形ABCD, 设BE=x, AE为折痕, AB=AF=1,BE=EF=x,AFE=B=90, RtABC中,RtEFC中,EC=2-x, , 解得:, 则点E到点B的距离为: 故选:C【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键4、C【分析】根据矩形、菱形、正方形的判定逐个判断即可【详解】解:A、四边形A
9、BCD是平行四边形,又AB=BC,四边形ABCD是菱形,故本选项不符合题意;B、四边形ABCD是平行四边形,又ACBD,四边形ABCD是菱形,故本选项不符合题意;C、四边形ABCD是平行四边形,又AC=BD,四边形ABCD是矩形,故本选项符合题意;D、四边形ABCD是平行四边形,又ABC=90,四边形ABCD是矩形,故本选不项符合题意;故选:C【点睛】本题考查了对矩形的判定、菱形的判定,正方形的判定的应用,能正确运用判定定理进行判断是解此题的关键,难度适中5、A【分析】由题意得出图中,BE=a,图中,BE=a,由勾股定理求出小直角三角形的斜边长为a,进而得出答案【详解】 线 封 密 内 号学级
10、年名姓 线 封 密 外 解:BC=4a,图中,BE=a,图中,BE=a,小直角三角形的斜边长为,图中纸盒底部剩余部分CF的长为4a-2a=a;故选:A【点睛】本题考查了矩形的性质以及勾股定理;熟练掌握矩形的性质和勾股定理是解题的关键6、D【分析】先分别化简各数,然后再进行比较即可【详解】解:a=20212022-20212=2021(2022-2021)=2021,b=1013100810121007=(1012+1)(1007+1)-10121007=10121007+1012+1007+1-10121007=1012+1007+1=2020,c=,2020c2021,bca,故选D【点睛】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年沪科版八 年级 下册 数学 综合 训练 答案 详解
限制150内