初一数学上册知识点总结及练习()模板.doc
《初一数学上册知识点总结及练习()模板.doc》由会员分享,可在线阅读,更多相关《初一数学上册知识点总结及练习()模板.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、荣升教育初中数学一对一辅导中心初一数学(上)知识点代数初步知识 1。 代数式:用运算符号 连接数及字母的式子称为代数式(单独一个数或一个字母也是代数式)2.几个重要的代数式:(m、n表示整数) (1)a与b的平方差是: a2b2 ; a与b差的平方是:(ab)2 ; (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;有理数 1。有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分
2、数;整数和分数统称有理数.注意:0即不是正数,也不是负数;a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: (3)注意:有理数中,1、0、1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a0 a是正数;a0 a是负数;a0 a是正数或0 a是非负数;a 0 a是负数或0 a是非正数.2数轴:数轴是规定了原点、正方向、单位长度的一条直线.3相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c的相反数是-a+b-c;ab的相反数是b-a;a+
3、b的相反数是-ab; (3)相反数的和为0 a+b=0 a、b互为相反数。 4。绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或 ;绝对值的问题经常分类讨论;(3) ; ;(4) |a是重要的非负数,即|a|0;注意:|a|b|=|ab, .5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数小数 0,小数-大数 0。6。互为倒
4、数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a0,那么的倒数是;倒数是本身的数是1;若ab=1 a、b互为倒数;若ab=1 a、b互为负倒数。7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。8有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c)。9有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)
5、任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac 。12有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (a)n=an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(ba)n 。14乘方的定义:(1)
6、求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a20;若a2+b=0 a=0,b=0;15科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17。有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。19。特殊值法:是用符合题目要求的数代
7、入,并验证题设成立而进行猜想的一种方法,但不能用于证明。整式的加减 1单项式:在代数式中,若只含有乘法(包括乘方)运算.或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3多项式:几个单项式的和叫多项式.4多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5整式:凡不含有除法运算,
8、或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为: 。6同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。7合并同类项法则:系数相加,字母与字母的指数不变.8去(添)括号法则:去(添)括号时,若括号前边是“+号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10。多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。一元一次方程 1等式的性质:
9、等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.2方程:含未知数的等式,叫方程。3方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!4一元一次方程:只含有一个未知数,且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a0)。8一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a0).9一元一次方程一般步骤:整理方程 .。去分母 去括号 移项 合并同类项 系数
10、化为1 (检验方程的解)。10列方程解应用题的常用公式:周长、面积、体积问题:C圆=2R,S圆=R2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=(R2r2),V长方体=abc ,V正方体=a3,V圆柱=R2h ,V圆锥=R2h。习题:1、若 ;若 2比较的大小: ; , ; 。3计算:(1); (2); (3); (4) ; (5); (5) (6);(7) ; (8)17(本题10分)计算(1) (2)解: 解:18(本题10分)解方程(1) (2) 解: 解:23(本题10分)关于x的方程与的解互为相反数(1)求m的值;(6分)(2)求这两个方程的解
11、(4分)解:相交线与平行线一、知识网络结构二、知识要点1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是邻补角.邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角,与 互为邻补角。 + = 180; + = 180; + = 180;+ = 180。4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向
12、延长线 ,这样的两个角互为 对顶角 .对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ;= 。5、两条直线相交所成的角中,如果有一个是 直角或90时,称这两条直线互相垂直,其中一条叫做另一条的垂线.如图2所示,当 = 90时, 。垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。性质3:如图2所示,当 a b 时, = = = = 90。点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。6、同位角、内错角、同旁内角基本特征:在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这
13、样的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角;与 是同位角; 与 是同位角; 与 是同位角。在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角.在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。平行线的性质:性质1:两直线平行,同位角相等。如图
14、4所示,如果ab,则 = ; = ; = ; = 。性质2:两直线平行,内错角相等。如图4所示,如果ab,则 = ; = .性质3:两直线平行,同旁内角互补。如图4所示,如果ab,则 + = 180;+ = 180。性质4:平行于同一条直线的两条直线互相平行。如果ab,ac,则。8、平行线的判定:判定1:同位角相等,两直线平行。如图5所示,如果 =或 = 或 = 或 = ,则ab.判定2:内错角相等,两直线平行.如图5所示,如果 = 或 = ,则ab .判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180;+ = 180,则ab。判定4:平行于同一条直线的两条直线互相平行。如果a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初一 数学 上册 知识点 总结 练习 模板
限制150内