《人教版九年级数学下册第二十九章-投影与视图必考点解析试题.docx》由会员分享,可在线阅读,更多相关《人教版九年级数学下册第二十九章-投影与视图必考点解析试题.docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十九章-投影与视图必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是( )A四棱柱B四棱
2、锥C圆柱D圆锥2、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )ABCD3、如图,身高1.5米的小明(AB)在太阳光下的影子AG长1.8米,此时,立柱CD的影子一部分是落在地面的CE,一部分是落在墙EF上的EH若量得米,米,则立柱CD的高为( )A2.5mB2.7mC3mD3.6m4、如图,将一块含30角的三角板ABC的直角顶点C放置于直线m上,点A,点B在直线m上的正投影分别为点D,点E,若AB10,BE3,则AB在直线m上的正投影的长是()A5B4C3+4D4+45、如图所示的几何体,其俯视图是( )ABCD6、如图所示的立体图形是一个圆柱被截去四分之一后得到的几何
3、体,它的左视图是( )ABCD7、如图是由6个同样大小的正方体摆成,将标有“1”的这个正方体去掉,所得几何体( )A俯视图不变,左视图不变B主视图改变,左视图改变C俯视图改变,主视图改变D主视图不变,左视图改变8、如图所示的几何体的俯视图是( )ABCD9、下列立体图形的主视图是()ABCD10、根据三视图,求出这个几何体的侧面积( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在白炽灯下方有一个乒乓球,当乒乓球越接近灯泡时,它在地面上影子的变化情况为_(填“越小”或“越大”,“不变”)2、一个几何体由若干大小相同的小立方体搭成,下图分别是从它的正面、
4、上面看到的形状图,该几何体最多用m个小立方体搭成,最少用n小立方体搭成,则m+n_3、如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是_4、请在右侧小方格内用阴影表示“从正面观察”得到的平面图形的示意图_5、如图为一个长方体,则该几何体从左面看得到的图形的面积为_三、解答题(5小题,每小题10分,共计50分)1、画出图中几何体的主视图、左视图、俯视图2、如图,这个几何体是由若干个棱长为1cm的小正方体搭成的(1)请画出从正面、左面、上面看到的几何体的形状图(2)求出从正面、左面、上面看到的几何体的表面积之和是多少3、一个几何体由大小相同的小立方块搭成,
5、箭头所指的为正面,请画出从正面、左面、上面看到的几何体的形状图4、如图所示的几何体是由几个相同的小正方体排成2行组成的(1)填空:这个几何体由_个小正方体组成;(2)画出该几何体的三个视图(3)若每个小正方体的边长为1cm,则这个几何体的表面积为 cm25、图中是由几个小立方块搭成的几何体的从上面看的形状图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的从正面看和从左面看的形状图-参考答案-一、单选题1、C【分析】根据三视图即可完成【详解】此几何体为一个圆柱故选:C【点睛】本题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状2、D【
6、分析】左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.【详解】解:该几何体从左面看到的形状图有2列,第1列看到1个正方形,第2列看到2个正方形,所以左视图是D,故选D【点睛】本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.3、A【分析】将太阳光视为平行光源,可得,MD=HE,即可得CM的值,故计算CD=CM+DM即可【详解】如图所示,过D点作BG平行线交FE于点H,过E点作BG平行线交CD于点MBG/ME/DHBGA=MEC,BAG=DCE=90,MD=HECD=CM+DM=1+1.5=2.5
7、故答案选:A【点睛】本题考查了相似三角形的判断即性质,由太阳光投影判断出平行关系进而求得相似是解题的关键4、C【分析】根据30角所对的直角边等于斜边的一半,可得AC=5,根据锐角三角函数可得BC的长,再根据勾股定理可得CE的长;通过证明ACDCBE,再根据相似三角形的性质可得CD的长,进而得出DE的长【详解】解:在RtABC中,ABC=30,AB=10,AC=AB=5,BC=ABcos30=10,在RtCBE中,CE=,CAD+ACD=90,BCE+ACD=90,CAD=BCE,RtACDRtCBE,CD=,DE=CD+BE=,即AB在直线m上的正投影的长是,故选:C【点睛】本题考查了平行投影
8、,掌握相似三角形的判断与性质以及勾股定理是解答本题的关键5、D【分析】几何体的俯视图即为从上往下看,所看到的平面图形,由此判断即可【详解】解:该几何体俯视图有2行,第一行有两个正方形,第二行右边有一个正方形,D选项图形符合题意,故选:D【点睛】本题考查简单组合体的三视图识别,理解三视图的基本概念,灵活运用空间想象能力是解题关键6、C【分析】根据左视图的定义,左视图就是物体由左向右方投影得到的视图,即可得出结论【详解】解:根据左视图的定义,该几何体的左视图是:故选:C 【点睛】此题考查了几何体左视图的判断,掌握左视图的定义是解题关键7、A【分析】根据几何体的三视图判断即可;【详解】根据已知图形,
9、去掉标有“1”的这个正方体,主视图改变,俯视图和左视图不变;故选A【点睛】本题主要考查了几何体三视图的应用,准确分析判断是解题的关键8、C【分析】根据几何体的俯视图即为从几何体的上面看到的形状,判断即可【详解】解:从上面看该几何体,所看到的图形如下:故选:C【点睛】本题考查简单组合体的三视图,理解视图的意义,解题的关键是:掌握俯视图的画法是正确判断的前提9、A【分析】主视图是从正面所看到的图形,根据定义和立体图形即可得出选项【详解】解:主视图是从正面所看到的图形,是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图10、D【分析】首先根据题意得出这个几何体是圆柱,然后根
10、据三视图得出圆柱的高和底面半径,最后根据圆柱的侧面积公式求解即可【详解】解:由题意知,几何体是底面直径为10、高为20 的圆柱,所以其侧面积为故选:D【点睛】此题考查了几何体的三视图,求圆柱的表面积,解题的关键是熟练掌握几何体的三视图,求圆柱的表面积公式二、填空题1、越大【解析】【分析】根据中心投影的特点可知,当乒乓球越接近灯泡时,离光源越近,影子越大,即可求解【详解】解:根据中心投影的特点可知,当乒乓球越接近灯泡时,离光源越近,影子越大,故答案为:越大【点睛】此题考查了中心投影的特点,等长的物体平行于地面放置时,离点光源越近,影子越长;离点光源越远,影子越短,熟练掌握中心投影的性质是解题的关
11、键2、17【解析】【分析】从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,进而可得答案【详解】解:如图,m2+2+2+2+210,n2+2+1+1+17,m+n10+717,故答案为:17【点睛】此题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案3、【解析】【分析】根据三视图画出图形,并且得出每列和每行的个数,然后相加即可得出答案【详解】解:根据三视图可画图如下:则组成这个几何体的小正方体的个数是:1+3+1+1+1+29;故答案为:9【点睛】本题
12、主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键4、见解析【解析】【分析】按照简单组合体三视图的画法画出相应的图形即可【详解】解:如图:主视图有3列,从左往右每列小正方数形数目分别为3,1,2【点睛】本题考查简单组合体的三视图,理解视图的意义,掌握视图的画法是得出正确答案的前提5、15【解析】【分析】先判断出左视图的形状,再计算出面积即可【详解】解:图中的几何体是长方体,左视图是长为5cm,宽为3cm的长方形,由长方形的面积公式得长方形的面积为:(cm2),故答案为:15【点睛】此题考查了由几何体判断三视图,关键是根据从左面看到的形状图的相关数据得出长方形的面积三、解答题1、见解析【
13、分析】主视图有3列,每列小正方形数目分别为1,1,2;左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每列小正方形数目分别为1,2,1依此画出图形即可求解【详解】解:如图所示:【点睛】此题考查的知识点是简单组合体的三视图,关键是明确主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形2、(1)见详解;(2)14cm2【分析】(1)根据从正面看得到的图形画在第一个网格中,根据从左面看得到的图形画在第二个网格中,根据从上面看得到的图形画在第三个网格中;(2)从正面看几何体的表面积为6cm2,从左面看几何体的表面积为4cm2,从上面看几何体的表面积为4cm2,利用加法运算求它
14、们的和即可【详解】(1)从正面看得到的图形为主视图从左到右3列,左数第一列3个小正方形,第2列2个小正方形,第3列1个小正方形,下方对齐;从左面看得到的图形是左视图从左到右2列,左数第1列3个小正方形,第2列1个小正方形下方对齐;从上面看得到的图形是俯视图从左到右3列,第1列2个小正方形,第2列1个小正方形,第3列1个小正方形,上对齐; (2)从正面看几何体的表面积为6cm2,从左面看几何体的表面积为4cm2,从上面看几何体的表面积为4cm2,从正面、左面、上面看到的几何体的表面积之和6+4+4=14cm2【点睛】本题考查由正方体找出简单组合体的三视图,从不同方向看到的表面积,掌握简单组合体的
15、三视图是解题关键3、见解析【分析】从正面看:共有3列,从左往右分别有3,1,1个小正方形;从左面看:共有3列,从左往右分别有1,3,1个小正方形;从上面看:共分3列,从左往右分别有3,1,2个小正方形据此可画出图形【详解】解:如图所示:【点睛】本题考查的是画简单组合体的三视图,用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形,理解三视图的含义是作图的关键.4、(1)7;(2)见解析;(3)【分析】(1)根据题意得:这个几何体有3列,从左往右第一列4个小正方体,第二列2个小正方体,第三列1个,即可求解;(2)根据几何体的三视图的画法,画出图形,即可求解;(3)根据几何体的表面积公式,即可求解【详解】解:(1)根据题意得:这个几何体有3列,从左往右第一列4个小正方体,第二列2个小正方体,第三列1个,这个几何体由4+2+1=7个小正方体组成;(2)该几何体的三个视图如图所示:(3)根据题意得:这个几何体的表面积为 【点睛】本题主要考查了画几何体的三视图,求几何体的表面积,熟练掌握几何体三视图的特征是解题的关键5、见解析【分析】根据立体图形的三视图特点解答【详解】解:从正面看,从左面看【点睛】此题考查立体图形的三视图,正确理解三视图所看的角度及小正方体的位置是解题的关键
限制150内