人教版八年级数学下册第十八章-平行四边形综合练习练习题(无超纲).docx
《人教版八年级数学下册第十八章-平行四边形综合练习练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第十八章-平行四边形综合练习练习题(无超纲).docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十八章-平行四边形综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D82、如图所示,公路AC、
2、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为()A2.5kmB4.5kmC5kmD3km3、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )ABCD4、如图,在菱形ABCD中,AB5,AC8,过点B作BECD于点E,则BE的长为( )ABC6D5、如图,已知是平分线上的一点,是的中点,如果是上一个动点,则的最小值为( )ABCD6、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()AAB=BEBDEDCCADB=9
3、0DCEDE7、如图所示,正方形ABCD的面积为16,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PDPE的和最小,则最小值为( )A2B3C4D68、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A6B6.5C10D139、如图,矩形ABCD中,DEAC于E,若ADE2EDC,则BDE的度数为( )A36B30C27D1810、如图,点E是ABC内一点,AEB90,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点若AB6,EF1,则线段AC的长为()A7BC8D9第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计
4、20分)1、判断:(1)菱形的对角线互相垂直且相等_( )_(2)菱形的对角线把菱形分成四个全等的直角三角形_( )_2、如图,在四边形ABCD中,AD/BC,B=90,DEBC于点E,AB=8 cm,AD=24 cm,BC=26 cm,点P从点A出发,沿边AD以1 cm/s的速度向点D运动,与此同时,点Q从点C出发,沿边CB以3 cm/s的速度向点B运动当其中一个动点到达端点时,另一个动点也随之停止运动连接PQ,过点P作PFBC于点F,则当运动到第_s时,DECPFQ3、如图,将矩形ABCD折叠,使点C与点A重合,折痕为EF若AF5,BF3,则AC的长为 _4、如图,在正方形ABCD中,点O
5、在内,则的度数为_5、如图中,分别是由个、个、个正方形连接成的图形,在图中,;在图中,;通过以上计算,请写出图中_(用含的式子表示)三、解答题(5小题,每小题10分,共计50分)1、如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点求证:(1)DAGDCG;(2)GCCH2、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为_3、如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交
6、DC的延长线于点F,连接BF,AC,且ADAF(1)判断四边形ABFC的形状并证明;(2)若AB3,ABC60,求EF的长4、如图,四边形ABCD是正方形,BEBF,BEBF,EF与BC交于点G(1)求证:AECF;(2)若ABE62,求GFC+BCF的值5、如图,已知ABC中,D是AB上一点,ADAC,AECD,垂足是E,F是BC的中点,求证:BD2EF-参考答案-一、单选题1、B【解析】【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90,根据勾股定理计算,得到答案【详解】解:C=90,CAB+CBA=90,点P,D分别是AF,
7、AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90,即PDQ=90,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键2、D【解析】【详解】根据直角三角形斜边上的中线性质得出CMAB,即可求出CM【解答】解:公路AC,BC互相垂直,ACB90,M为AB的中点,CMAB,AB6km,CM3km,即M,C两点间的距离为3km,故选:D【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半3、B【
8、解析】【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2一个直角三角形的周长为3+,AB+BC=3+-2=1+等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2ABBC=4+2,AB2+BC2=AC2=4,2ABBC=2,ABBC=,即三角形的面积为ABBC=故选:B【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出ACBC的值是解此题的关键,值得学习应用4、B【解析】【
9、分析】根据菱形的性质求得的长,进而根据菱形的面积等于,即可求得的长【详解】解:如图,设的交点为,四边形是菱形,在中,菱形的面积等于故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得的长是解题的关键5、C【解析】【分析】根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值【详解】解:点P是AOB平分线上的一点,PDOA,M是OP的中点,点C是OB上一个动点当时,PC的值最小,OP平分AOB,PDOA,最小值,故选C【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直
10、角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键6、B【解析】【分析】先证明四边形BCED为平行四边形,再根据矩形的判定进行解答【详解】解:四边形ABCD为平行四边形,ADBC,且AD=BC,又AD=DE,DEBC,且DE=BC,四边形BCED为平行四边形,A、AB=BE,DE=AD,BDAE,DBCE为矩形,故本选项不符合题意;B、DEDC,EDB=90+CDB90,四边形DBCE不能为矩形,故本选项符合题意;C、ADB=90,EDB=90,DBCE为矩形,故本选项不符合题意;D、CEDE,CED=90,DBCE为矩形,故本选项不符合题意故选:B【点睛】本
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 下册 第十八 平行四边形 综合 练习 练习题 无超纲
限制150内