2021-2022学年度北师大版九年级数学下册第三章-圆专题测评练习题(无超纲).docx
《2021-2022学年度北师大版九年级数学下册第三章-圆专题测评练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版九年级数学下册第三章-圆专题测评练习题(无超纲).docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第三章 圆专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在数轴上,点A所表示的实数为3,点B所表示的实数为a,A的半径为2,下列说法错误的是()A当a5时,点B在A内B当1
2、a5时,点B在A内C当a1时,点B在A外D当a5时,点B在A外2、如图,是正方形的外接圆,若的半径为4,则正方形的边长为( )A4B8CD3、如图,RtABC中,A90,B30,AC1,将RtABC延直线l由图1的位置按顺时针方向向右作无滑动滚动,当A第一次滚动到图2位置时,顶点A所经过的路径的长为()ABCD(2+)4、如图,在Rt中,以点为圆心,长为半径的圆交于点,则的长是( )A1BCD25、下列说法正确的是( )A相等的圆心角所对的弧相等,所对的弦相等B平分弦的直径垂直于弦,并且平分弦所对的弧C等弧所对的圆心角相等,所对的弦相等D圆是轴对称图形,其对称轴是任意一条直径6、下列说法中,正
3、确的是()A相等的圆心角所对的弧相等B过任意三点可以画一个圆C周长相等的圆是等圆D平分弦的直径垂直于弦7、到三角形三个顶点距离相等的点是此三角形()A三条角平分线的交点B三条中线的交点C三条高的交点D三边中垂线的交点8、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20B25C30D409、如图,菱形ABCD的顶点B,C,D均在A上,点E在弧BD上,则BED的度数为()A90B120C135D15010、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,3)则经画图操作可知:ABC的外接圆的圆心坐标是( )A(2,1)B(1,0)C(1,1)
4、D(0,1)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,则图中阴影部分的面积为_2、如图,半径为2的扇形AOB的圆心角为120,点C是弧AB的中点,点D、E是半径OA、OB上的动点,且满足DCE60,则图中阴影部分面积等于_3、如图,PA,PB分别切O于点A,B,Q是优弧上一点,若P=40,则Q的度数是_4、一个扇形的面积是3cm2,圆心角是60,则此扇形的半径是_cm5、用一个半径为2的半圆作一个圆锥的侧面,这个圆锥的底面圆的半径为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标
5、系xOy中,OAB的顶点坐标分别为O(0,0),A(5,0), B(4,3),将OAB绕点O顺时针旋转90得到OAB,点A旋转后的对应点为A(1)画出旋转后的图形OAB,并写出点A 的坐标;(2)求点B经过的路径的长(结果保留). 2、如图,O是ABC的外接圆,AD是O的直径,F是AD延长线上一点,连接CD,CF,且:CF是O的切线(1)求证:DCFCAD(2)探究线段CF,FD,FA的数量关系并说明理由;(3)若cosB,AD2,求FD的长3、如图1,抛物线yax22ax+b(a0)与x轴交于A、B两点(A点在B点的左边),与y轴的正半轴交于点C,顶点为D,OBOC3OA(1)求抛物线解析式
6、;(2)如图2,点E的坐标为(0,7),若过点E作一条直线与抛物线在对称轴右侧有且只有一个交点H,直线ykx2k5(k0)与抛物线交于F、G两点,求当k为何值时,FGH面积最小,并求出面积的最小值;(3)如图3,已知直线l:y2x1,将抛物线沿直线l方向平移,平移过程中抛物线与直线l相交于E、F两点设平移过程中抛物线的顶点的横坐标为m,在x轴上存在唯一的一点P,使EPF90,求m的值4、如图,已知抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l与抛物线交于A,D两点,点D的坐标为,与y轴交于点E(1)求A,B两点的坐标及直线l的解析式;(2)若点P在直线l下方抛物线上,过
7、点P作轴于点M,直线与直线l交于点N,当点M是的三等分点时,求点P的坐标;(3)若点H是抛物线对称轴上的一点,且,请直接写出点H的坐标5、如图,为的直径,弦的延长线相交于点,且求证:-参考答案-一、单选题1、A【分析】根据数轴以及圆的半径可得当d=r时,A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可【详解】解:圆心A在数轴上的坐标为3,圆的半径为2,当d=r时,A与数轴交于两点:1、5,故当a=1、5时点B在A上;当dr即当1a5时,点B在A内;当dr即当a1或a5时,点B在A外由以上结论可知选项B、C、D正确,选项A错误故选A【点睛】
8、本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键2、D【分析】连接OB,OC,过点O作OEBC于点E,由等腰直角三角形的性质可知OE=BE,由垂径定理可知BC=2BE,故可得出结论【详解】解:连接OB,OC,过点O作OEBC于点E,OB=OC,BOC=90,OBE=45, OE=BE,OE2+BE2=OB2,BC=2BE=,即正方形ABCD的边长是故选:D【点睛】本题考查的是圆周角定理、垂径定理及勾股定理,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键3、C【分析】根据题意,画出示意图,确定出点的运动路径,再根据弧长公式即可求解【详解】解:根据题意可得,RtABC的
9、运动示意图,如下:RtABC中,A90,B30,AC1,由图形可得,点的运动路线为,先以为中心,顺时针旋转,到达点,经过的路径长为,再以为中心,顺时针旋转,到达点,经过的路径长为,顶点A所经过的路径的长为,故选:C【点睛】此题考查了旋转的性质,圆弧弧长的求解,解题的关键是根据题意确定点的运动路线4、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CEAB于E,利用,求出BE,根据垂径定理求出BD即可得到答案【详解】解: 在Rt中,BC=3,连接CD,过点C作CEAB于E, 解得,CB=CD,CEAB,故选:B【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练
10、应用是解题的关键5、C【分析】根据圆心角、弧、弦的关系对AC进行判断;根据垂径定理的推论对B进行判断;根据对称轴的定义对D进行判断【详解】解:A、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以本选项错误;B、平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以本选项错误;C、等弧所对的圆心角相等,所对的弦相等,所以本选项正确;D、圆是轴对称图形,其对称轴是任意一条直径所在的直线,所以本选项错误;故选:C【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等也考查了垂径定理6、C【分析】根据确定
11、圆的条件,圆心角、弦、弧之间的关系,垂径定理和圆周角定理逐个判断即可【详解】A、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法不正确;B、不在同一直线上的三个点确定一个圆,若这三个点在一条直线上,就不能确定圆,故本选项说法不正确;C、周长相等半径就相等,半径相等的两个圆能重合,故本选项说法正确;D、平分弦(不是直径)的直径垂直于弦,故本选项说法不正确;故选:C【点睛】本题考查的是对圆的认识,圆心角、弦、弧之间的关系,垂径定理,利用相关的知识逐项判断是基本的方法7、D【分析】由题意根据线段的垂直平分线上的性质,则有三角形三边中垂线的交点到三角形的三个顶点距离相等【详解】解:垂直平分线上任
12、意一点,到线段两端点的距离相等,到三角形三个顶点的距离相等的点是三角形三边中垂线的交点故选:D【点睛】本题考查了线段的垂直平分线的性质,解题的关键是注意掌握线段的垂直平分线上的点到线段的两个端点的距离相等8、B【分析】连接OA,如图,根据切线的性质得PAO=90,再利用互余计算出AOP=50,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90,P=40,AOP=50,OA=OB,B=OAB,AOP=B+OAB,B=AOP=50=25故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年度 北师大 九年级 数学 下册 第三 专题 测评 练习题 无超纲
限制150内