《京改版七年级数学下册第八章因式分解单元测试试卷(精选).docx》由会员分享,可在线阅读,更多相关《京改版七年级数学下册第八章因式分解单元测试试卷(精选).docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、京改版七年级数学下册第八章因式分解单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将分解因式,正确的是( )ABCD2、如图,在边长为的正方形中挖掉一个边长为的小正方形,把余下的部分剪成一个矩形,
2、通过计算两个图形(阴影部分)的面积,验证了一个等式是( )ABCD3、下列各式中,由左向右的变形是分解因式的是( )ABCD4、多项式分解因式的结果是( )ABCD5、下列运算错误的是( )ABC D(a0)6、因式分解:x34x2+4x()ABCD7、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A2B3C4D58、下列变形,属因式分解的是( )ABCD9、把分解因式的结果是( )ABCD10、下列因式分解正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:_2、若多项式能用完全平方公式进行因式分解,则_3、分
3、解因式:mx24mx4m_4、若x+y=2,xy=-3,则x2y+xy2的值为_5、分解因式:_三、解答题(5小题,每小题10分,共计50分)1、因式分解:(1) (2)2、将下列多项式进行因式分解:(1);(2)3、分解因式:4、因式分解:(1)3ac-6abc+3bc(2)x(m-2n)+y(2n-m)(3)(4)(x1)(x3)15、把下列各式因式分解:(1) (2)-参考答案-一、单选题1、C【解析】【分析】直接利用提取公因式法进行分解因式即可【详解】解:;故选C【点睛】本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键2、A【解析】【分析】左图中阴影部分的
4、面积a2b2,右图中矩形面积(ab)(ab),根据二者面积相等,即可解答【详解】解:由题意可得:a2b2(ab)(ab)故选:A【点睛】此题主要考查了乘法的平方差公式,属于基础题型3、B【解析】【分析】判断一个式子是否是因式分解的条件是等式的左边是一个多项式,等式的右边是几个整式的积,左、右两边相等,根据以上条件进行判断即可【详解】解:A、,不是因式分解;故A错误;B、,是因式分解;故B正确;C、,故C错误;D、,不是因式分解,故D错误;故选:B【点睛】本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键4、B【解析】【分析】先提取公因式a,再根据平方差公式进行二次分解平方差公式
5、:a2-b2=(a+b)(a-b)【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y)故选:B【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底5、A【解析】【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断【详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a0),故该选项正确,不符合题意,故选A【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键6、A【解析】【分析】根据因式分解
6、的解题步骤,“一提、二套、三查”,进行分析,首先将整式进行提公因式,变为:,之后套公式变为:,即可得出对应答案【详解】解:原式故选:A【点睛】本题考查的是因式分解的基础应用,熟练掌握因式分解的一般解题步骤,以及各种因式分解的方法是解题的关键7、C【解析】【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解
7、8、A【解析】【分析】依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可【详解】解:A、是因式分解,故此选项符合题意;B、分解错误,故此选项不符合题意;C、右边不是几个整式的积的形式,故此选项不符合题意;D、分解错误,故此选项不符合题意;故选:A【点睛】本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键9、B【解析】【分析】先用平方差公式分解因式,在提取公因式即可得出结果【详解】解:a2+2a-b2-2b,=(a2-b2)+(2a-2b),=(a+b)(a-b)+2(a-b),=(a-b)(a+b+2),故选:B【点睛】
8、此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键10、D【解析】【分析】各项分解得到结果,即可作出判断【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键二、填空题1、#【解析】【分析】先提取公因式,然后利用平方差公式进行因式分解即可【详解】解:,故答案为: 【点睛】题目主要考查因式分解的提公因式法和平方差公式法的综合运用,熟练掌握因式分解方法是解题关键2、9或-7#-7或9【解析】【分析】利用完全平方公式的结构特征判断即可求出m的值【详解】
9、解:多项式x2-(m-1)x+16能用完全平方公式进行因式分解,m-1=8,解得:m=9或m=-7,故答案为:9或-7【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键3、m(x2)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式=m(x2-4x+4)=m(x-2)2,故答案为:【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键4、-6【解析】【分析】先提取公因式 再整体代入求值即可.【详解】解: x+y=2,xy=-3, 故答案为:【点睛】本题考查的是因式分解的应用,掌握“利用因式分解的方法求解代数式的值”
10、 是解题的关键.5、x(x+2y)(x-2y)【解析】【分析】先提取公因式,再用平方差公式进行分解即可【详解】解:x3-4xy2=x(x2-4y2)=x(x+2y)(x-2y)故答案为:x(x+2y)(x-2y)【点睛】本题考查了分解因式,分解因式要先提取公因式,再运用公式,分解因式方法可以参考口诀“一提,二套,三分组,十字相乘做辅助”灵活运用所学方法进行分解,注意:分解要彻底三、解答题1、(1);(2)【解析】【分析】(1)先提取y,再利用完全平方公式即可求解 (2)先提取,再利用平方差公式即可求解【详解】(1)原式;(2)原式【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法2、
11、(1);(2)【解析】【分析】(1)提取公因式然后利用完全平方公式进行因式分解即可;(2)提取公因式然后利用平方差公式进行因式分解即可【详解】解:(1)原式;(2)原式【点睛】此题考查了因式分解,涉及了平方差公式和完全平方公式,解题的关键是掌握因式分解的方法3、【解析】【分析】先根据完全平方公式分组分解,再利用平方差公式计算即可【详解】解:原式=【点睛】本题考查利用分组分解法分解因式,正确把握完全平方公式和平方差公式特点是解题的关键4、(1);(2);(3);(4)【解析】【分析】(1)原式提取公因式3c,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可;(3)原式提取公因式2,再利用完全平方公式分解即可;(4)先计算多项式乘多项式,再利用公式法因式分解即可【详解】(1) (2)(3)=(4)=【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键5、(1);(2)【解析】【分析】(1) 提取公因式,即可得到答案;(2)先把原式化为,再提取公因式,即可得到答案 【详解】(1),原式 ;(2) ,原式,【点睛】本题考查用提公因式法进行因式分解,找出题目中的公因式是解题的关键
限制150内