人教版八年级数学下册第十七章-勾股定理章节测评试题.docx
《人教版八年级数学下册第十七章-勾股定理章节测评试题.docx》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第十七章-勾股定理章节测评试题.docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十七章-勾股定理章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,如图1,图2由弦图变化得到,它
2、是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3若正方形EFGH的边长为3,则S1+S2+S3的值是( )A20B27C25D492、如图,有一个长、宽、高分別为2m、3m、1m的长方体,现一只蚂蚁沿长方体表面从A点爬到B点,那么最短的路径是( )A32mB3mC2mD25m3、如图,在数轴上,点O对应数字O,点A对应数字2,过点A作AB垂直于数轴,且AB=4,连接OB,绕点O顺时针旋转OB,使点B落在数轴上的点C处,则点C所表示的数介于( )A2和3之间B3和4之间C4和5之间D5和6之间4、如图,以数轴的单位长度为边作正方形
3、,以数轴上的原点O为圆心,正方形的对角线的长为半径作弧与数轴交于一点A,则点A表示的数为( )A1BCD25、如图,OAOB,则数轴上点A所表示的数是( )A1.5BCD26、如图,在等腰中,以OA1为直角边作等腰,以OA2为直角边作等腰,则的长度为( )ABCD7、若一个直角三角形的一条直角边长是,另一条直角边比斜边短,则斜边长为( )A25BCD8、如图,以RtABC(ACBC)的三边为边,分别向外作正方形,它们的面积分别为S1S2S3,若S1S2S312,则S1的值是( )A4B5C6D79、下列各组数据中,能构成直角三角形的三边的长的一组是()A1,2,3B4,5,6C5,12,13D
4、13,14,1510、下列各组数中,以它们为边长的线段能构成直角三角形的是( )A1,2,3B1,C4,5,6D12,15,20第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,等腰ABC中,ABAC,BC,BD是AC边上的中线,G是ABC的重心,则GD_2、如图,将一副三板按图所示放置,DAEABC90,D45,C30,点E在AC上,过点A作AFBC交DE于点F,则_3、如图,等腰ABC中,ABAC5,BC6,BDAC,则BD_4、如图,点P是AOB的角平分线上一点,过点P作PCOA交OB于点C,过点P作PDOA于点D,若AOB60,OC2,则PD_5、如图,在等
5、边中,点E为AC的中点,延长BC到点D,使得,延长交于点F,则_三、解答题(5小题,每小题10分,共计50分)1、在ABC中,AB、BC、AC三边的长分别为、,求这个三角形的面积小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC三个顶点都在小正方形的顶点处),如图1所示这样不需求ABC的高,而借用网格就能计算出它的面积这种方法叫做构图法(1)ABC的面积为:;(2)若DEF三边的长分别为、,请在图1的正方形网格中画出相应的DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE
6、的面积分别为13,10,17,且PQR、BCR、DEQ、AFP的面积相等,求六边形花坛ABCDEF的面积2、己知:在平面直角坐标系xOy中,ABC如图所示(1)将ABC进行平移,使得点A平移到点O,作出平移后的OBC,并求出平移的距离AO_(温馨提示:请把图画在答题卷相对应的图上);(2)若ABC上有一点P(a,b),平移后的对应点为P,则P的坐标是_(用含a,b的代数式表示)3、我边防战士在海拔高度(即CD的长)为50米的小岛顶部D处执行任务,上午8时发现在海面上的A处有一艘船,此时测得该船的俯角为30,该船沿着AC方向航行一段时间后到达B处,又测得该船的俯角为45,求该船在这一段时间内的航
7、程(计算结果保留根号)4、如图,在1010的网格中建立如图的平面直角坐标系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是 ;(2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EF与DC是否关于某直线对称?若是,则对称轴是 ;E点坐标是 ;(3)ABP是以AB为直角边的格点等腰直角三角形(A,B,P三点都是小正方形的顶点),则点P的坐标是 5、如图,已知线段a和EAF,点B在射线AE上在EAF中画出ABC,使点C在射线AF上,且BCa(1)依题意将图补充完整;(2)如果A45,AB
8、4,BC5,求ABC的面积-参考答案-一、单选题1、B【分析】根据八个直角三角形全等,四边形ABCD,四边形EFGH,四边形MNKT是正方形,得出CGKG,CFDGKF,再根据S1(CG+DG)2,S2GF2,S3(KFNF)2,S1+S2+S33GF2,即可求解【详解】解:在RtCFG中,由勾股定理得:CG2+CF2=GF2,八个直角三角形全等,四边形ABCD,四边形EFGH,四边形MNKT是正方形,CG=KG=FN,CF=DG=KF,S1=(CG+DG)2=CG2+DG2+2CGDG=CG2+CF2+2CGDG=GF2+2CGDG,S2=GF2,S3=(KF-NF)2,=KF2+NF2-2
9、KFNF=KF2+KG2-2DGCG=FG2-2CGDG,正方形EFGH的边长为3,GF2=9,S1+S2+S3=GF2+2CGDG+GF2+FG2-2CGDG=3GF2=27,故选:B【点睛】本题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形、全等三角形的性质等知识,根据已知得出S1+S2+S3=3GF2=27是解题的关键2、A【分析】将图形分三种情况展开,利用勾股定理求出两种情况下斜边的长进行比较,其值最小者即为正确答案【详解】解:如图(1),AB=(2+3)2+12=26(m);如图(2),AB=22+(1+3)2=20=25(m);如图(3),AB=32+(2+1)2=32(
10、m), 322526,最短的路径是32m故选:A【点睛】本题主要考查了勾股定理的应用,两点之间线段最短,解题的关键在于能够把长方体展开,利用勾股定理求解3、C【分析】因为OAB是一个直角三角形,且有OC=OB,所以可求得OB的长度即得C点所表示的数,可判断其大小【详解】解:ABOA在直角三角形OAB中有 OA2+AB2=OB245 又OC=OB点C所表示的数介于4和5之间故选:C【点睛】此题考查勾股定理,无理数的估算,重点就是由垂直而组成的直角三角形的性质,从而解得答案4、B【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可【详解】解:由勾股定理得:,O点表示的原点,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 下册 第十七 勾股定理 章节 测评 试题
限制150内