2021-2022学年度强化训练北师大版九年级数学下册第二章二次函数专题测试试题(含解析).docx
《2021-2022学年度强化训练北师大版九年级数学下册第二章二次函数专题测试试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版九年级数学下册第二章二次函数专题测试试题(含解析).docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第二章二次函数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、抛物线y(x+2)2+1可由抛物线yx2平移得到,下列平移正确的是()A先向右平移2个单位,再向上平移1个单位B
2、先向右平移2个单位,再向下平移1个单位C先向左平移2个单位,再向上平移1个单位D先向左平移2个单位,再向下平移1个单位2、如图,线段AB5,动点P以每秒1个单位长度的速度从点A出发,沿线段AB运动至点B,以点A为圆心,线段AP长为半径作圆设点P的运动时间为t,点P,B之间的距离为y,A的面积为S,则y与t,S与t满足的函数关系分别是( )A正比例函数关系,一次函数关系B一次函数关系,正比例函数关系C一次函数关系, 二次函数关系D正比例函数关系,二次函数关系3、下列图形既是轴对称图形又是中心对称图形的是( )A等边三角形B双曲线C抛物线D平行四边形4、在平面直角坐标系中,点M的坐标为(m,m2
3、- bm),b为常数且b 3若m2 - bm 2 - b,m ,则点M的横坐标m的取值范围是 ( )A0 m Bm C m Dm 2 - b,得到m2 - bm - 2 +b=0,因式分解得,进而判断出,故当m2 - bm - 2 +b0时,或,再由,且,可知无解,即可求解.【详解】m2 - bm 2 - b, m2 - bm - 2 +b0,令m2 - bm - 2 +b=0,则,则或,解得:,二次函数y= x2 - bx - 2 +b,开口向上,与x轴交点为x1,x2,(且x10时,xx2,令x=m,则y= m2 - bm - 2 +b=0,解得,即,当m2 - bm - 2 +b0时,或
4、,则,且,无解,故选:B【点睛】此题考查了因式分解法解一元二次方程,二次函数的图象的性质,对进行取值范围的确定是解答此题的关键.5、A【分析】求出抛物线C1与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方,然后求出到抛物线C5平移的距离,再根据向右平移横坐标减表示出抛物线C5的解析式,然后把点P的坐标代入计算即可得解【详解】解:令y0,则x(x3)0,解得x10,x23,A1(3,0),由图可知,抛物线C5在x轴上方,相当于抛物线C1向右平移4312个单位得到,抛物线C5的解析式为y(x12)(x123)(x12)(x15),P(14,m)在第5段抛物线C5上,m(1412)(1415
5、)2故选:A【点睛】本题考查了抛物线与x轴的交点,二次函数图象与几何变换,确定抛物线C5的关系式是解题的关键,平移的规律:左加右减,上加下减6、D【分析】关于x的一元二次方程ax2+bx+c=0(a0)的根即为二次函数y=ax2+bx+c(a0)的图象与x轴的交点的横坐标【详解】解:根据图象知,抛物线y=ax2+bx+c(a0)与x轴的一个交点是(-3,0),对称轴是直线x=-1设该抛物线与x轴的另一个交点是(x,0)则=-1,解得,x=1,即该抛物线与x轴的另一个交点是(1,0)所以关于x的一元二次方程ax2+bx+c=0(a0)的根为x1=-3,x2=1故选:D【点睛】本题考查了抛物线与x
6、轴的交点解题时,注意抛物线y=ax2+bx+c(a0)与关于x的一元二次方程ax2+bx+c=0(a0)间的转换7、B【分析】根据二次函数的定义即可判断【详解】A. 是反比例函数,故此选项错误;B. 是二次函数,故此选项正确;C. 是一次函数,故此选项错误;D. 是正比例函数,故此选项错误故选:B【点睛】本题考查二次函数的定义:形如,其中,且a、b、c是常数,掌握二次函数的定义是解题的关键8、D【分析】利用配方法,把一般式转化为顶点式即可【详解】解:,故选:D【点睛】本题考查了二次函数的一般式,顶点式,正确利用配方法是解答本题的关键,配方法方法是,先提出二次项系数,再加上一次项系数的一半的平方
7、来凑完全平方式9、A【分析】根据抛物线的图象与性质即可解答;【详解】解:对于任何实数,抛物线与抛物线的相同点是形状与开口方向相同,抛物线的对称轴是y轴,顶点是原点,有最高点(0,0);抛物线的对称轴是直线x=h,顶点是(h,0),有最高点(h,0);故选:A【点睛】本题考查了抛物线的图象与性质,属于基础题目,熟练掌握抛物线的图象与性质是关键10、C【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论【详解】解:A.二次函数图象开口向下,对称轴在y轴右侧,a0,一次函数图象应该过第一、二、
8、四象限,A错误;B.二次函数图象开口向上,对称轴在y轴右侧,a0,b0,一次函数图象应该过第一、三、四象限,B错误;C.二次函数图象开口向下,对称轴在y轴左侧,a0,b0,b0,一次函数图象应该过第一、三、四象限,D错误;故选C【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,根据a、b的正负确定一次函数图象经过的象限是解题的关键二、填空题1、【分析】当时,一次函数的图像在二次函数的图像的下方,利用函数图像可以得到自变量的取值范围,即不等式的解集【详解】解:联立方程组,解得,直线与抛物线的交点为: 当时,一次函数的图像在二次函数的图像的下方,所以此时:故答案为:【点睛】本题考查的是
9、利用图像法求不等式的解集,掌握利用二次函数与一次函数的图像写不等式的解集是解题的关键2、【分析】先找出二次函数取得最大值时x的取值,再将x和最大值代入二次函数解析式即可求出a的值【详解】解:二次函数的最大值为,a0,且二次函数取得最大值时,此时故答案为:【点睛】本题考查二次函数的最值,熟练掌握该知识点是解题关键3、【分析】根据“上加下减,左加右减”的原则进行解答即可【详解】解:将抛物线yx2向下平移2个单位后所得新抛物线的表达式为yx2-2故答案是:yx2-2【点睛】本题主要考查了二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答本题的关键4、4042【分析】如图所示,过点B1,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年度 强化 训练 北师大 九年级 数学 下册 第二 二次 函数 专题 测试 试题 解析
链接地址:https://www.taowenge.com/p-28169632.html
限制150内