2021-2022学年度强化训练北师大版九年级数学下册第二章二次函数必考点解析练习题(含详解).docx
《2021-2022学年度强化训练北师大版九年级数学下册第二章二次函数必考点解析练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版九年级数学下册第二章二次函数必考点解析练习题(含详解).docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第二章二次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将抛物线向右平移2个单位,再向上平移3个单位得到的抛物线是( )ABCD2、已知二次函数的图象如图所示,在下列
2、五个结论中:;其中正确的个数有( )A1个B2个C3个D4个3、已知二次函数yax2+bx+c的部分图象如图所示,则关于x的一元二次方程ax2+bx+c0的解为()Ax13,x20Bx13,x21Cx13,x21Dx13,x214、二次函数的图象如图所示,则方程的根是( )ABCD5、下列各式中,是的二次函数的是( )ABCD6、某同学将如图所示的三条水平直线,的其中一条记为x轴(向右为正方向),三条竖直直线,的其中一条记为y轴(向上为正方向),并在此坐标平面内画出了二次函数的图象,那么她所选择的x轴和y轴分别为直线( )A,B,C,D,7、抛物线的顶点坐标是( )A(1,2)B(1,2)C(
3、1,2)D(1,2)8、将抛物线向左平移2个单位长度,再向上平移3个单位长度,所得抛物线的解析式为( )ABCD9、下列关于二次函数y2x2的说法正确的是()A它的图象经过点(1,2)B当x0时,y随x的增大而减小C它的图象的对称轴是直线x2D当x0时,y有最大值为010、抛物线y(x+2)2+1可由抛物线yx2平移得到,下列平移正确的是()A先向右平移2个单位,再向上平移1个单位B先向右平移2个单位,再向下平移1个单位C先向左平移2个单位,再向上平移1个单位D先向左平移2个单位,再向下平移1个单位第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果数m使关于x的二次函
4、数y=-x2+2x+m-4的函数值恒为负数,且使关于x的方程(m-2)x2+4x-1=0有实数根,那么所有满足条件的整数m的值的和为_2、若点,在抛物线上,则,的大小关系为:_(填“”,“=”或“”)3、二次函数的最大值为,则的值为_4、如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x2,点C在抛物线上,且位于点A、B之间(C不与A、B重合)若ABC的周长为5,则四边形AOBC的周长为 _5、点A(x1,y1),B(x2,y2)(x1x20)是y=ax2(a0)图象上的点,存在=1时,=1成立,写出一个满足条件a的值_三、解答题(5小题
5、,每小题10分,共计50分)1、如图,抛物线与x轴交于点,两点点P是直线BC上方抛物线上一动点,过点P作轴于点E,交直线BC于点D设点P的横坐标为m(1)求抛物线的解析式;(2)求的最大面积及点P的坐标;2、学习完二次函数后,某班“数学兴趣小组”的同学对函数的图象和性质进行了探究在经历列表、描点、连线步骤后得到其图象如图所示请根据函数图象完成以下问题:(1)观察发现:写出该函数的一条性质_;函数图象与轴有_个交点,所以对应的方程有_个实数根;(2)分析思考:方程的解为_;关于的方程有4个实数根时,的取值范围是_;(3)延伸探究:将函数的图象经过怎样的平移可以得到函数的图象,直接写出平移过程3、
6、某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨2元,就会少售出20件玩具(1)不妨设该种品牌玩具的销售单价为x元(x40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件) 销售玩具获得利润w(元) (2)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于400件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?4、在平面直角坐标系中 ,抛物线与y轴交于点A,其对称轴与x轴交于点B,一次函数的图象经过点A,B
7、(1)求一次函数的表达式;(2)当时,对于x的每一个值,函数的值大于一次函数的值,直接写出n的取值范围5、在平面直角坐标系xOy中,点(1,m)和点(3,n)在二次函数yx2bx的图象上(1)当m-3时求这个二次函数的顶点坐标; 若点(-1,y1),(a,y2)在二次函数的图象上,且y2y1,则a的取值范围是_;(2)当mn0时,求b的取值范围-参考答案-一、单选题1、A【分析】抛物线的移动主要看顶点的移动,的顶点是, 的顶点是,的顶点是 ,的顶点是 先确定抛物线顶点坐标是原点,然后根据向右平移,横坐标加,向上平移纵坐标加,求出平移后的抛物线的顶点坐标,再根据平移变换不改变图形的形状,利用顶点
8、式写出即可抛物线的平移口诀:自变量加减:左加右减,函数值加减:上加下减【详解】解:抛物线的顶点坐标为(0,0),向右平移2个单位,再向上平移3个单位,平移后的顶点坐标为(2,3),平移后的抛物线解析式为故选:A【点睛】本题考查了二次函数图象的平移,根据顶点的变化确定函数的变化,要熟记平移规律“左加右减,上加下减”2、C【分析】由抛物线开口向上得a0,由抛物线的对称轴为直线x=-0得b0,判断;由抛物线与y轴的交点在x轴上方得c0判断,利用图象将x=1,-1,2代入函数解析式判断y的值,进而对所得结论进行判断【详解】解:抛物线开口向上,a0,抛物线的对称轴x=-0,b0,-1,2a-b,2a-b
9、-2b,b0,-2b0,即2a-b0,故错误;抛物线与y轴的交点在x轴下方,c0,故正确;当x=2时,y=4a+2b+c0,故正确,故错误的有3个故选:C【点睛】本题考查了二次函数图象与系数的关系,熟练利用数形结合得出是解题关键3、D【分析】关于x的一元二次方程ax2+bx+c=0(a0)的根即为二次函数y=ax2+bx+c(a0)的图象与x轴的交点的横坐标【详解】解:根据图象知,抛物线y=ax2+bx+c(a0)与x轴的一个交点是(-3,0),对称轴是直线x=-1设该抛物线与x轴的另一个交点是(x,0)则=-1,解得,x=1,即该抛物线与x轴的另一个交点是(1,0)所以关于x的一元二次方程a
10、x2+bx+c=0(a0)的根为x1=-3,x2=1故选:D【点睛】本题考查了抛物线与x轴的交点解题时,注意抛物线y=ax2+bx+c(a0)与关于x的一元二次方程ax2+bx+c=0(a0)间的转换4、C【分析】根据抛物线与x轴的交点坐标即可求得【详解】解:抛物线y=x2-2x-3与x轴交于(-1,0)和(3,0),方程x2-2x-3=0的两个根为x1=-1,x2=3故选:C【点睛】本题考查了二次函数与x轴的交点问题,二次函数的图象上点的坐标特征,数形结合是解题的关键5、C【分析】根据二次函数的定义依次判断【详解】解:A、不是二次函数,不符合题意;B、,不是二次函数,不符合题意;C、,是二次
11、函数,符合题意;D、,不是二次函数,不符合题意;故选:C【点睛】此题考查二次函数的定义:形如的函数是二次函数,解题的关键是正确掌握二次函数的构成特点6、D【分析】由抛物线开口向上可知,由抛物线配方为,可得抛物线的对称轴为,顶点纵坐标为,据此结合图象可得答案【详解】解:抛物线的开口向上下,抛物线的对称轴为直线,应选择的轴为直线;顶点坐标为,抛物线与轴的交点为,而,应选择的轴为直线,故选:D【点睛】本题考查了二次函数的图象,解题的关键是理解掌握二次函数的图象与各系数的关系是解题的关键,同时注意数形结合思想的运用7、B【分析】根据二次函数顶点式的特征计算即可;【详解】抛物线,顶点坐标为(1,2);故
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年度 强化 训练 北师大 九年级 数学 下册 第二 二次 函数 必考 解析 练习题 详解
链接地址:https://www.taowenge.com/p-28169799.html
限制150内