《人教版八年级数学下册第十七章-勾股定理定向训练试题(无超纲).docx》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第十七章-勾股定理定向训练试题(无超纲).docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十七章-勾股定理定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,数轴上点A所表示的数是()AB+1C+1D12、如图,四边形是边长为9的正方形纸片,将其沿折叠,使点落在
2、边上的点处,点的对应点为点,则的长为( )A1.8B2C2.3D3、下列命题属于假命题的是( )A3,4,5是一组勾股数B内错角相等,两直线平行C三角形的内角和为180D9的平方根是34、在平面直角坐标系中,已知点A(2,5),点B(1,1),则线段AB的长度为( )A2B3C4D55、如图,在44的正方形网格中,每个小正方形的边长均为1,点A,B,C都在格点上,ADBC于点D,则AD的长为()AB2CD36、下列长度的线段能组成直角三角形的是( )A3,4,6B3,4,5C6,8,9D5,12,147、如图,高速公路上有两点A,B相距25km,C,D为两个乡镇,已知DA10km,CB15km
3、,DAAB于点A,CBAB于点B,现需要在AB上建一个高速收费站E,使得C,D两个乡镇到E站的距离相等,则BE的长为( )A10kmB15kmC20kmD25km8、如图,RtABC中,ACB90,ABC30,分别以AC,BC,AB为一边在ABC外面做三个正方形,记三个正方形的面积依次为S1,S2,S3,已知S14,则S3为()A8B16CD+49、以下列各组数据为三角形三边,能构成直角三角形的是()A4,8,7B5,12,14C2,2,4D6,8,1010、如图是由4个全等的直角三角形与1个小正方形拼成的正方形图案已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(
4、ab),则下列说法:a2+b2=25,ab=1,ab=12,a+b=7正确的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,等腰RtABC中,ACB90,ACBC3,D点为AC边上一点,E为AB边上一动点,将ADE沿着DE折叠,点A的对应点A落在ABC的边上,若AD2,则线段AC的长度为 _2、如图,已知,直角中,从直角三角形两个锐角顶点所引的中线的长,则斜边AB之长为_3、如图,Rt中,将边沿翻折,使点落在上的点处;再将边沿翻折,使点落在的延长线上的点处,两条折痕与斜边分别交于点、,以下四个结论:;是等腰直角三角形;其中正确结论的序号有_4、如
5、图,点P是等边ABC内的一点,PA6,PB8,PC10,若点P是ABC外的一点,且PABPAC,则APB的度数为_5、如图,ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60得到FC,连接DF则在点E的运动过程中,当DF的长度最小时,CE的长度为_三、解答题(5小题,每小题10分,共计50分)1、在ABC中,AB、BC、AC三边的长分别为、,求这个三角形的面积小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC三个顶点都在小正方形的顶点处),如图1所示这样不需求ABC的高,而借用
6、网格就能计算出它的面积这种方法叫做构图法(1)ABC的面积为:;(2)若DEF三边的长分别为、,请在图1的正方形网格中画出相应的DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且PQR、BCR、DEQ、AFP的面积相等,求六边形花坛ABCDEF的面积2、已知,如图,ACB和ECD都是等腰直角三角形,ACB=ECD=90,点D在AB边上(1)图中哪一对三角形全等?说明理由;(2)若BD=9,AD=12,求DE的长3、已知ABC中,C=90,BC=3cm,BD=12cm,AD=13cm,ABC的面
7、积是6cm2(1)求AB的长度;(2)求ABD的面积4、如图,在ABC中,CACB,ACB90,AB5,点D是边AB上的一个动点,连接CD,过C点在上方作CECD,且CECD,点P是DE的中点(1)如图,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图,连接CP并延长交AB边所在直线于点Q,若AQ2,求BD的长5、图,图均为44的正方形网格,每个小正方形的顶点称为格点,且每个小正方形的边长均为1图中点A,B,C均在格点上,请分别在给定的网格中画出格点M,使点M满足相应的要求(1)在图中画出格点M,连结MA,使MA5(2)在图中画出格点M,连结MA,MB,MC,使MAMBMC-参
8、考答案-一、单选题1、D【分析】先根据勾股定理计算出BC,则BABC,然后计算出AD的长,接着计算出OA的长,即可得到点A所表示的数【详解】解:如图,BD1(1)2,CD1,BC,BABC,AD2,OA1+21,点A表示的数为1故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键2、B【分析】连接BM,MB,由于CB=3,则DB=6,在RtABM和RtMDB中由勾股定理求得AM的值【详解】解:连接BM,MB,设AM=x,在RtABM中,AB2+AM2=BM2,在RtMDB中,BM2=MD2+DB2,折叠,MB=MB,AB2+AM2= MD2+
9、DB2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2,故选:B【点睛】本题考查了翻折的性质,对应边相等,利用了勾股定理建立方程求解3、D【分析】利用勾股数的定义、平行线的判定、三角形的内角和及平方根的定义分别判断后即可确定正确的选项【详解】解:A、3,4,5是一组勾股数,正确,是真命题,不符合题意;B、内错角相等,两直线平行,正确,是真命题,不符合题意;C、三角形的内角和为180,正确,是真命题,不符合题意;D、9的平方根是3,故原命题是假命题,符合题意故选:D【点睛】考查了命题与定理的知识,解题的关键是了解勾股数的定义、平行线的判定、三角形的内角和及平方根的定义,难度不大
10、4、D【分析】根据题意画出点的位置,然后根据勾股定理计算即可【详解】解:的位置如图所示:过点作轴的平行线,过点作轴的平行线,和交于点,故选:D【点睛】本题考查了平面直角坐标系中两点的距离,勾股定理,根据题意构建直角三角形,运用勾股定理解题是关键5、B【分析】首先由勾股定理得AB,AC,BC的三边长,从而有AB2+AC2BC2,得BAC90,再根据SABC,代入计算即可【详解】解:由勾股定理得:AB,AC,BC,AB2+AC225,BC225,AB2+AC2BC2,BAC90,SABC,AD2,故选:B【点睛】本题主要考查了勾股定理,通过勾股定理计算出三边长度,判断出BAC90是解题的关键6、B
11、【分析】根据勾股定理的逆定理逐一判断即可【详解】解:A、32+4262,故此选项不符合题意;B、32+4252,故此选项符合题意;C、62+8292,故此选项不符合题意;D、52+122142,故此选项不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,解题的关键是理解如果三角形的三边长为a、b、c满足a2+b2c2,那么这个三角形就是直角三角形7、A【分析】根据题意设出的长为,再由勾股定理列出方程求解即可【详解】解:设,则,由勾股定理得:在中,在中,由题意可知:,解得:,BE=10km故选A【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键8、B【分析】根据直角
12、三角形30度角的性质得到AB=2AC,再利用正方形面积公式求值【详解】解:RtABC中,ACB90,ABC30,AB=2AC,S3=AB2=4AC2=4S116,故选:B【点睛】此题考查了直角三角形30度角的性质:直角三角形30度角所对的直角边等于斜边的一半,熟记性质是解题的关键9、D【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可【详解】解:A、42+7282,故不为直角三角形;B、52+122142,故不为直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、62+82=102,能构成直角三角形;故选:D【点睛】本题考查勾股定理的逆定理的应用判断三角形
13、是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形10、D【分析】由大的正方形的边长为结合勾股定理可判断,由小的正方形的边长为 结合小正方形的面积可判断,再利用 结合可判断,再由可判断,从而可得答案.【详解】解:由题意得:大正方形的边长为 故符合题意;用a、b表示直角三角形的两直角边(ab),则小正方形的边长为: 则(负值不合题意舍去)故符合题意; 而 故符合题意; (负值不合题意舍去)故符合题意;故选D【点睛】本题考查的是以勾股定理为背景的几何面积问题,同时考查了完全平方公式的应用,熟练的应
14、用完全平方公式的变形求值是解本题的关键.二、填空题1、或【分析】分当点在AB上时和当点在BC上时两种情况讨论求解即可得到答案【详解】解:如图所示,当点在AB上时,由折叠的性质可得,ACB=90,AC=BC=3,CD=AC-AD=1,A=B=45,;如图所示,当点在BC上时,由折叠的性质可得,CD=AC-AD=1,综上所述,或,故答案为:或【点睛】本题主要考查了勾股定理与折叠,等腰直角三角形的性质,三角形外角的性质,解题的关键在于能够熟练掌握相关知识进行求解2、8【分析】设BC=x,AC=y,根据勾股定理列方程组,从而可求得斜边的平方,即求得斜边的长【详解】设BC=x,AC=y,直角三角形两个锐
15、角顶点所引的中线在RtADC和RtBCE中,由勾股定理得:故答案为:8【点睛】注意此题的解题技巧:根据已知条件,在两个直角三角形中运用勾股定理列方程组求解的时候,注意不必分别求出未知数的值,只需求出两条直角边的平方和,运用勾股定理即可3、【分析】根据折叠的性质,然后结合等腰三角形的性质,直角三角形的性质,以及勾股定理,分别对每个选项进行判断,即可得到答案【详解】解:由折叠的性质可知,;故正确;,是等腰直角三角形;故正确;由勾股定理,则,由勾股定理,则,故错误;,;故正确;正确的选项有;故答案为:;【点睛】本题考查了折叠的性质,勾股定理,等腰三角形的判定和性质,三角形的面积公式等知识,解题的关键
16、是掌握折叠的性质,正确得到边相等、角相等4、150【分析】如图:连接PP,由PACPAB可得PAPA、PABPAC,进而可得APP为等边三角形易得PPAPAP6;然后再利用勾股定理逆定理可得BPP为直角三角形,且BPP90,最后根据角的和差即可解答【详解】解:连接PP,PACPAB,PAPA,PABPAC,PAPBAC60,APP为等边三角形,PPAPAP6;PP2+BP2BP2,BPP为直角三角形,且BPP90,APB90+60150故答案为:150【点睛】本题主要考查了全等三角形的性质、等边三角形的判定与性质、勾股定理逆定理的应用等知识点,灵活应用相关知识点成为解答本题的关键5、【分析】取
17、线段的中点,连接,根据等边三角形的性质以及角的计算即可得出以及,由旋转的性质可得出,由此即可利用全等三角形的判定定理证出,进而即可得出,再根据点为的中点,求出和的长,由勾股定理可得出答案【详解】取线段的中点,连接,如图所示为等边三角形,且为的对称轴,在和中,当时,最小,此时为的中点,故答案为【点睛】本题考查了勾股定理,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出三、解答题1、(1)3.5;(2)见解析,3;(3)62【分析】(1)根据网格特点,由长方形的面积减去长方形内除所求三角形以外三个三角形面积即可求解;(2)根据三边的长度,利用勾股定理在网
18、格中画出相应的三角形,利用(1)中方法求解面积即可;(3)先利用正方形的面积求出PR、RQ、PQ,根据构图法求出PQR的面积,将七个图形面积加起来即可求得该六边形的面积【详解】解:(1)根据网格,SABC=33212313=913=3.5,故答案为:3.5;(2),利用构图法画出相应的DEF,如图所示,SDEF=24212214=8122=3;(3)正方形PRBA,RQDC,QPFE的面积分别为13,10,17,PR=,RQ=,QP=,构造PQR,如图所示,SPQR=34312314=1232=,PQR、BCR、DEQ、AFP的面积相等,该六边形的面积为13+10+17+4=62【点睛】本题考
19、查网格作图、勾股定理、二次根式的应用、正方形的面积公式、三角形的面积公式、长方形的面积公式,理解构图法的原理,借助网格法和割补法求解图形面积是解答的关键2、(1)ACEBCD,理由见解析;(2)15【分析】(1)证明再结合从而可得结论;(2)由全等三角形的性质证明 再利用勾股定理可得答案.【详解】解:(1)ACEBCD,理由如下: ACB和ECD都是等腰直角三角形,ACB=ECD=90, (2) 【点睛】本题考查的是等腰直角三角形的性质,全等三角形的判定与性质,勾股定理的应用,证明是解本题的关键.3、(1)(2)【分析】(1)根据直角三角形ABC的面积求得AC,再根据勾股定理即可求得AB的长;
20、(2)根据勾股定理的逆定理证明ABD是直角三角形,即可求解【详解】解:(1)C90(2)【点睛】此题主要是考查了勾股定理及其逆定理注意:直角三角形的面积等于两条直角边的乘积的一半4、(1)APDE,理由见解析;(2)BD或【分析】(1)连接AE,首先根据ACBECD90,得到ECADCB,然后证明BCDACE(SAS),根据全等三角形对应角相等得到EACB45,进一步得出EAD90,最后根据直角三角形斜边上的中线等于斜边的一半即可得出APDE;(2)分两种情况讨论:当Q在线段AB上时和当Q在线段BA延长线上时,连接AE,EQ,根据题意得出CQ垂直平分DE,进而根据垂直平分线的性质得到EQDQ,
21、设BDAEx,在RtAEQ中根据勾股定理列方程求解即可;【详解】解:(1)APDE,理由:连接AE,如图,CACB,ACB90,CABCBA45ACBECD90,ECADCB在BCD和ACE中,BCDACE(SAS)EACB45EADEAC+BAC90又P为DE中点,APDE(2)情况(一),当Q在线段AB上时,连接AE,EQ,如图,CECD,且CECD,点P是DE的中点,CPDE即CQ垂直平分DE,EQDQ设BDAEx,EQDQABAQBD3x,由(1)知:EAB90,EA2+AQ2EQ2x2+22(3x)2,解得x,即BD;情况(二),当Q在线段BA延长线上时,连接AE,EQ,如图,CECD,且CECD,点P是DE的中点,CPDE即CQ垂直平分DE,EQDQ设BDAEx,同理可得方程:x2+22(7x)2,解得x综上:BD或【点睛】此题考查了全等三角形的性质和判定,勾股定理的运用,垂直平分线的性质,直角三角形斜边中线的性质等知识,解题的关键是根据题意正确作出辅助线5、(1)见解析;(2)见解析【分析】(1)根据勾股定理解答;(2)连接AB、BC,分别作其垂直平分线,两平分线交点即为所求点M【详解】解:如图,由勾股定理得;(2)如图,点M即为所求【点睛】此题考查了网格中作图,勾股定理的应用,线段垂直平分线的性质,正确理解线段垂直平分线的性质是解题的关键
限制150内