2021-2022学年基础强化沪教版七年级数学第二学期第十五章平面直角坐标系月考试题(名师精选).docx
《2021-2022学年基础强化沪教版七年级数学第二学期第十五章平面直角坐标系月考试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化沪教版七年级数学第二学期第十五章平面直角坐标系月考试题(名师精选).docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、七年级数学第二学期第十五章平面直角坐标系月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家
2、的( )A正东方向B正西方向C正南方向D正北方向2、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )A(-4,-3)B(4,3)C(4,-3)D(-4,3)3、点(a,3)关于原点的对称点是(2,b),则ab( )A5B5C1D14、已知点M(2,3),点N与点M关于x轴对称,则点N的坐标是()A(2,3)B(2,3)C(3,2)D(2,3)5、在平面直角坐标系中,点在轴上,则点的坐标为( )ABCD6、如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(1,1),第四次向右跳动5 个单位至点A4(3,2),依此规律跳动下去,点A第2020次跳动至
3、点A2020的坐标是( )A(2020,1010)B(1011,1010)C(1011,1010)D(2020,1010)7、点关于轴对称的点的坐标是( )ABCD8、在平面直角坐标系中,点在( )A轴正半轴上B轴负半轴上C轴正半轴上D轴负半轴上9、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A(-4,3)B(4,-3)C(-3,4)D(3,-4)10、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是()A(-1,-2)B(-2,1)C(2,1)D(2,-1)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平
4、面直角坐标系中,点在轴上,则点的坐标为_2、有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3)(7,3)(4,1)(4,4)请你把这个英文单词写出来或者翻译中文为_3、在平面直角坐标系中,点与,关于y轴对称,则的值为_4、在平面直角坐标系中,点A(m,5)和点B(2,n)关于x轴对称,则m+n=_5、点P(2,4)关于y轴对称的点的坐标是_三、解答题(10小题,每小题5分,共计50分)1、如图1,A(2,6),C(6,2),ABy轴于点B,CDx轴于点D(1)求证:AOBCOD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点
5、,点F为y轴正半轴上一点,连接AF,EFEFCE且EFCE,点G为AF中点连接EG,EO,求证:OEG452、如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(4,3)、B(3,1)、C(1,3)(1)请按下列要求画图:将ABC先向右平移4个单位长度、再向上平移2个单位长度,得到A1B1C1,画出A1B1C1;A2B2C2与ABC关于原点O成中心对称,画出A2B2C2(2)在(1)中所得的A1B1C1和A2B2C2关于点M成中心对称,请写出对称中心M点的坐标 3、在平面直角坐标系中描出以下各点:A(3,2)、B(-1,2)、C(-2,-1)、D(4,-1)顺次连接A、B、C、D得到
6、四边形ABCD;4、在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的伴随图形例如:点P(2,1)的伴随图形是点P(-2,-1).(1)点Q(-3,-2)的伴随图形点Q的坐标为 ;(2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).当t=-1,且直线m与y轴平行时,点A的伴随图形点A的坐标为 ;当直线m经过原点时,若ABC的伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围5、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(1,0
7、),B(4,1),C(2,2)(1)直接写出点B关于原点对称的点B的坐标: ;(2)平移ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的A1B1C1;(3)画出ABC绕原点O逆时针旋转90后得到的A2B2C26、如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3,5),ABC关于y轴的对称图形为A1B1C1 (1)请画出ABC关于y轴对称图形A1B1C1,并写出三个顶点的坐标A1( ), B1( ),C1( )(2)在y轴上取点D,使得ABD为等腰三角形,这样的点D共有 个7、如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(1,0),B(2,-3)
8、,C(4,-2)(1)画出ABC关于x轴的对称图形A1B1C1;(2)画出A1B1C1向左平移3个单位长度后得到的A2B2C2,并写出其顶点坐标;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是_8、在平面直角坐标系中,的顶点,的坐标分别为,与关于轴对称,点,的对应点分别为,请在图中作出,并写出点,的坐标9、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点A的坐标为(1,-4)(1)A1B1C1是ABC关于y轴的对称图形,则点A的对称点A1的坐标是_,并在图中画出A1B1C1(2)将ABC绕原点逆时
9、针旋转90得到A2B2C2,则A点的对应点A2的坐标是_,并在图中画出A2B2C2 10、如图,在直角坐标系中按要求作图,所画图形的顶点必须与每个小正方形的顶点重合(1)画出一个面积等于9的等腰直角三角形ABC,使ABC的三个顶点在坐标轴上,且ABC关于y轴对称,其中点A的坐标为(0,3);(点B在点C的左侧)(2)将ABC向下平移3个单位,再向右平移1个单位得到A1B1C1(点A、B、C的对应点分别为点A1、B1、C1),画出A1B1C1,并直接写出A1C的长-参考答案-一、单选题1、B【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可【详解】解:二人都在车站北500米,小红在学
10、校东,小强在学校西,所以小强家在小红家的正西【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答2、B【分析】利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标【详解】解: A(-4,3) ,关于y轴对称点B的坐标为(4,3)故答案为:B【点睛】本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键3、B【分析】根据关于原点对称的点的坐标特证构造方程-b3,a2,再解方程即可得到a、b的值,进而可算出答案【详解】解:点(a,3)关于原点的对称点是(2,b),b3,a2,解得:b-3,a2,则,故
11、选择B【点睛】本题主要考查了关于原点对称的点的坐标:掌握关于原点对称的特征,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(x,y)关键是利用对称性质构造方程4、D【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案【详解】点M(2,3),点N与点M关于x轴对称,点N的坐标是(2,3),故选:D【点睛】本题考查了坐标轴中轴对称变化,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数5、A【分析】根据轴上的
12、点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标【详解】解:点在轴上,解得故选A【点睛】本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键平面直角坐标系中坐标轴上点的坐标特点:x轴正半轴上的点:横坐标0,纵坐标=0;x轴负半轴上的点:横坐标0;y轴负半轴上的点:横坐标=0,纵坐标0;坐标原点:横坐标=0,纵坐标=06、C【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 基础 强化 沪教版 七年 级数 第二 学期 第十五 平面 直角 坐标系 月考 试题 名师 精选
链接地址:https://www.taowenge.com/p-28172134.html
限制150内