2021-2022学年浙教版初中数学七年级下册第四章因式分解专项练习试题(名师精选).docx
《2021-2022学年浙教版初中数学七年级下册第四章因式分解专项练习试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解专项练习试题(名师精选).docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第四章因式分解专项练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、将边长为m的三个正方形纸片按如图1所示摆放并构造成边长为n的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m和n的长方形时,所得长方形的面积为35.则图2中长方形的周长是()A.24B.26C.28D.302、下列因式分解正确的是()A.x24(x+4)(x4)B.4a28aa(4a8)C.a2+2a+2(a+1)2+1D.x22x+1(x1)2
2、3、下列各选项中因式分解正确的是( )A.x21(x1)2B.a32a2aa2(a2)C.2y24y2y(y2)D.a2b2abbb(a1)24、下列各式从左到右的变形是因式分解为( )A.B.C.D.5、下列因式分解正确的是( )A.B.C.D.6、已知,则的值为( )A.0和1B.0和2C.0和-1D.0或17、多项式的各项的公因式是( )A.B.C.D.8、下列等式从左到右的变形,属于因式分解的是()A.m (a+b)ma+mbB.x2+2x+1x(x+2)+1C.x2+xx2(1+)D.x29(x+3)(x3)9、已知下列多项式:;.其中,能用完全平方公式进行因式分解的有( )A.B.
3、C.D.10、下列多项式中,能用平方差公式进行因式分解的是( )A.B.C.D.11、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,现将3a(x21)3b(x21)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱新化C.我爱新化D.新化数学12、下列各式从左到右的变形中,属于因式分解的是( )A.6x9y33(2x3y)B.x21(x1)2C.(xy)2x22xyy2D.2x222(x1)(x1)13、下列因式分解正确的是( )A.x2-4=(x+4)(x-4)B.x2+2x+1=x(x+2)+1
4、C.3mx-6my=3m(x-6y)D.x2y-y3=y(x+y)(x-y)14、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2A.B.C.D.15、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5二、填空题(10小题,每小题4分,共计40分)1、小明将(2020x+2021)2展开后得到a1x2+b1x+c1;小红将(2021x2020)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1c2的值是_2、因式分解a39a_3、将12张长为a,宽为b(ab)的小长方形纸片,按如图方式不重叠地放在大长
5、方形ABCD内,未被覆盖的部分用阴影表示,若阴影部分的面积是大长方形面积的,则小长方形纸片的长a与宽b的比值为 _4、若,则_5、分解因式:9a2+b2_6、若关于的二次三项式可以用完全平方公式进行因式分解,则_7、分解因式:12a2b9ac_8、分解因式:_9、因式分解:_10、RSA129是一个129位利用代数知识产生的数字密码曾有人认为,RSA129是有史以来最难的密码系统,涉及数论里因数分解的知识,在我们的日常生活中,取款、上网等都需要密码,有一种用“因式分解”法产生的密码方便记忆如,多项式x4y4,因式分解的结果是(xy)(x+y)(x2+y2)若取x9,y9时,则各因式的值分别是:
6、xy0,x+y18,x2+y2162,于是就可以把“018162”作为一个六位数的密码对于多项式4x3xy2,若取x10,y10,请按上述方法设计一个密码是 _(设计一种即可)三、解答题(3小题,每小题5分,共计15分)1、教科书中这样写道:“我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方,再减去这个项,使整个式子的值不变,这种方法叫做配方法配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求最值问题例如:分解因式x2+2
7、x-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);例如求代数式2x2+4x-6=2(x+1)2-8,当x= -1时,2x2+4x-6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2-4m-5=(2)当a,b为何值时,多项式2a2+3b2-4a+12b+18有最小值,求出这个最小值(3)当a,b为何值时,多项式a2 - 4ab+5b2 - 4a+4b+27有最小值,并求出这个最小值2、(1)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法例如:分解因式:;若都是正整数且满足,求的值;(2)若为实数
8、且满足,求的最小值3、因式分解:6m3n+4mn22mn-参考答案-一、单选题1、A【分析】由题意:按如图1所示摆放并构造成边长为n的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m和n的长方形时,所得长方形的面积为35,列出方程组,求出3m=7,n=5,即可解决问题.【详解】依题意,由图1可得,由图2可得,即解得或者(舍)时,则图2中长方形的周长是.故选A.【点睛】本题考查了利用因式分解解方程,找准等量关系,列出方程是解题的关键.2、D【分析】各式分解得到结果,即可作出判断.【详解】解:A、原式(x+2)(x2),不符合题意;B、原
9、式4a(a2),不符合题意;C、原式不能分解,不符合题意;D、原式(x1)2,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A、,选项错误;B、,选项错误;C、 ,选项错误;D、,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.4、D【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A. ,属于整式的乘法运算,故本选项错误;B. ,属于整式的乘法运算,故本选项错误;C.
10、左边和右边不相等,故本选项错误;D. ,符合因式分解的定义,故本选项正确;故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.5、C【分析】利用平方差公式、完全平方公式、提公因式法分解因式,分别进行判断即可.【详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误;故选:C.【点睛】此题主要考查了公式法分解因式,关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a22ab+b2=(ab)2.6、B【分析】根据已知条件得出(x-1)3-(x-1)=0,再通过因式分
11、解求出x的值,然后代入要求的式子进行计算即可得出答案.【详解】解:,x-1=(x-1)3,(x-1)3-(x-1)=0,(x-1)(x-1)2-1=0,(x-1)(x-1+1)(x-1-1)=0,x(x-1)(x-2)=0,x1=0,x2=1,x3=2,x2-x=0或x2-x=12-1=0或x2-x=22-2=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,解题的关键是通过式子变形求出x的值.7、A【分析】公因式的定义:一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.由公因式的定义求解.【详解】解:这三个单项式的数字最大公因数是1,三项含有字母是a,b,其中a的最低次
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 浙教版 初中 数学 年级 下册 第四 因式分解 专项 练习 试题 名师 精选
限制150内