2022年精品解析沪教版七年级数学第二学期第十四章三角形定向攻克练习题(无超纲).docx
《2022年精品解析沪教版七年级数学第二学期第十四章三角形定向攻克练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪教版七年级数学第二学期第十四章三角形定向攻克练习题(无超纲).docx(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪教版七年级数学第二学期第十四章三角形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC中,ABC45,CDAB于D,BE平分ABC,且BEAC于E,与CD相交于点F,DHBC于H,交B
2、E于G,下列结论中正确的是( )BCD为等腰三角形;BFAC;CEBF;BHCEABCD2、如图,BAD90,AC平分BAD,CBCD,则B与ADC满足的数量关系为()ABADCB2BADCCB+ADC180DB+ADC903、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )A10B8C7D44、如图,已知为的外角,那么的度数是( )A30B40C50D605、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )ASSSBSASCASADAAS6、下列三角形与下图全等的三角形是( )ABCD7、若一个三角形的三个外角之比为3:4:
3、5,则该三角形为()A直角三角形B等腰三角形C等边三角形D等腰直角三角形8、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)()若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是( )ABCD9、若等腰三角形的一个外角是70,则它的底角的度数是( )A110B70C35D5510、以下列各组线段为边,能组成三角形的是( )A3cm,4cm,5cmB3cm,3cm,6cmC5cm,10cm,4cmD1cm,2cm,3cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC和DBC,BA=BD中,请你添加一个条件使得ABCDBC,这
4、个条件可以是_(写出一个即可)2、等腰,底角为70,点在边上,将分成两个三角形,当这两个三角形有一个是以为腰的等腰三角形时,则的度数是_3、如图,BE平分交AD于点E,连接CE,AF交CD的延长线于点F,若,则的度数为_4、如图,ABC中,B20,D是BC延长线上一点,且ACD60,则A的度数是_ 度5、若等腰三角形两底角平分线相交所形成的钝角是128,则这个等腰三角形的顶角的度数是_三、解答题(10小题,每小题5分,共计50分)1、如图,RtACB中,ACB90,ACBC,E点为射线CB上一动点,连结AE,作AFAE且AFAE(1)如图1,过F点作FDAC交AC于D点,求证:FDBC;(2)
5、如图2,连结BF交AC于G点,若AG3,CG1,求证:E点为BC中点(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC4,BE3,则 (直接写出结果)2、周老师带领同学们在数学课上探究下面命题的正确性:顶角为36的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形为此,请你完成下列问题:(1)已知:如图,在中,直线BD平分交AC于点D求证:与都是等腰三角形;(2)在证明了该命题后,小尹同学发现:图、两个等腰三角形也具有这种特性,请你在图、图中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小尹又发现:还有一
6、些非等腰三角形也具有这样的特性:即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形,请你画出一个具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征3、如图,在中,是角平分线,(1)求的度数;(2)若,求的度数4、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,P为上一点,当_时,与是偏等积三角形;(2)如图2,四边形是一片绿色花园,、是等腰直角三角形,与是偏等积三角形吗?请说明理由;已知的面积为如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G若小路每米造价600元,请
7、计算修建小路的总造价5、在等边中,D、E是BC边上两动点(不与B,C重合)(1)如图1,求的度数;(2)点D在点E的左侧,且AD=AE,点E关于直线AC的对称点为F,连接AF,DF依题意将图2补全;求证:6、如图,在中,点D、E分别在边AB、AC上,BE与CD交于点F,求和的度数7、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上要求以为边画一个等腰,且使得点为格点请在下面的网格图中画出3种不同的等腰8、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DEAB,过点E作EFDE,交BC的延长线于点F(1)求证:CECF;(2)若CD2,求
8、DF的长9、如图,ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动(1)在运动过程中DEF是什么形状的三角形,并说明理由;(2)若运动到某一时刻时,BE=4,DEC=150,求等边ABC的周长;10、如图,E为BC中点,DE平分(1)求证:平分;(2)求证:;(3)求证:-参考答案-一、单选题1、C【分析】根据ABC45,CDAB可得出BDCD;利用AAS判定RtDFBRtDAC,从而得出BFAC;再利用AAS判定RtBEARtBEC,即可得到CEBF;由CEBF,BHBC,在三角形BCF中,比较BF、BC的长度即
9、可得到CEBH【详解】解:CDAB,ABC45,BCD是等腰直角三角形BDCD,故正确;在RtDFB和RtDAC中,DBF90BFD,DCA90EFC,且BFDEFC,DBFDCA又BDFCDA90,BDCD,DFBDACBFAC,故正确;在RtBEA和RtBEC中BE平分ABC,ABECBE又BEBE,BEABEC90,RtBEARtBECCEACBF,故正确;CEACBF,BHBC,在BCF中,CBEABC22.5,DCBABC45,BFC112.5,BFBC,CEBH,故错误;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL在复杂
10、的图形中有45的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点2、C【分析】由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得ABCAEC,从而得BC=EC,B=AEC,可求得CD=CE,得CDE=CED,证得B=CDE,即可得出结果【详解】解:在射线AD上截取AEAB,连接CE,如图所示:BAD90,AC平分BAD,BACEAC,在ABC与AEC中,ABCAEC(SAS),BCEC,BAEC,CBCD,CDCE,CDECED,BCDE,ADC+CDE180,ADC+B180故选:C【点睛】本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE3、C
11、【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则,即又为整数,则整数m的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键4、B【分析】根据三角形的外角性质解答即可【详解】解:ACD60,B20,AACDB602040,故选:B【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答5、A【分析】根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得【详解】解:三根木条即为三角形的三边长,即为利用确定三角形,故选:A【点睛】题
12、目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键6、C【分析】根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案【详解】由题可知,第三个内角的度数为,A.只有两边,故不能判断三角形全等,故此选项错误;B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误故选:C【点睛】本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键7、A【分析】根据三角形外角和为360计算,求出内角的度数,判断即可【详解】解:设三角形的三个外
13、角的度数分别为3x、4x、5x,则3x+4x+5x360,解得,x30,三角形的三个外角的度数分别为90、120、150,对应的三个内角的度数分别为90、60、30,此三角形为直角三角形,故选:A【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360是解题的关键8、B【分析】过点作轴于,由“”可证,可得,即可求解【详解】解:如图,过点作轴于,点,是等腰直角三角形,且,在和中,故选:B【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形9、C【分析】先求出与这个外角相邻的内角的度数为,再根据三角形的内角和定理即可得【详解】解:等腰三
14、角形的一个外角是,与这个外角相邻的内角的度数为,这个等腰三角形的顶角的度数为,底角的度数为,故选:C【点睛】本题考查了等腰三角形、三角形的内角和定理等知识点,判断出等腰三角形的顶角的度数为是解题关键10、A【分析】三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.【详解】解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意; 所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意; 所以以5cm,10cm,4c
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 精品 解析 沪教版 七年 级数 第二 学期 第十四 三角形 定向 攻克 练习题 无超纲
限制150内