2022年最新人教版八年级数学下册第十八章-平行四边形综合训练试题(含答案解析).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年最新人教版八年级数学下册第十八章-平行四边形综合训练试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版八年级数学下册第十八章-平行四边形综合训练试题(含答案解析).docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十八章-平行四边形综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若10,则E
2、AF的度数为()A40B45C50D552、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形下面是某个合作小组的4位同学拟定的方案,其中正确的是( )A测量对角线是否互相平分B测量两组对边是否分别相等C测量其内角是否均为直角D测量对角线是否垂直3、如图,在长方形ABCD中,AB6,BC8,点E是BC边上一点,将ABE沿AE折叠,使点B落在点F处,连接CF,当CEF为直角三角形时,则BE的长是( )A4B3C4或8D3或64、如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F, ,则 ABCD的面积为( ) A24B32C40D485、若一
3、个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )ABCD6、如图,正方形ABCD中,AB12,点E在边BC上,BEEC,将DCE沿DE对折至DFE,延长EF交边AB于点G,连接DG、BF,给出以下结论:DAGDFG;BG2AG;BF/DE;SBEF其中所有正确结论的个数是( )A1B2C3D47、顺次连接矩形各边中点得到的四边形是( )A平行四边形B矩形C菱形D正方形8、如图,在长方形ABCD中,AB10cm,点E在线段AD上,且AE6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上以vcm/s的速度由点B向点C运动,当EAP与PBQ
4、全等时,v的值为()A2B4C4或D2或9、如图,矩形ABCD的面积为1cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B,;依此类推,则平行四边形AO2014C2015B的面积为( )cmABCD10、如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于点E若AB4,BC8,则图中阴影部分的面积为()A8B10C12.5D7.5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点D、E分别是ABC边AB、AC的中点,已知BC12,则DE_2、如图,在边长为1的菱形ABCD中,AB
5、C60,将ABD沿射线BD的方向平移得到ABD,分别连接AC,AD,BC,则AC+BC的最小值为_3、如图,将n个边长都为1的正方形按如图所示摆放,点A1,A2,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为_4、如图,在等腰OAB中,OAOB2,OAB90,以AB为边向右侧作等腰RtABC,则OC的长为 _5、如图,在ABC中,ACB90,以AC,BC和AB为边向上作正方形ACED和正方形BCMI和正方形ABGF,点G落在MI上,若AC+BC7,空白部分面积为16,则图中阴影部分的面积是 _三、解答题(5小题,每小题10分,共计50分)1、如图,ABC中,点D是边AC的中点
6、,过D作直线PQBC,BCA的平分线交直线PQ于点E,点G是ABC的边BC延长线上的点,ACG的平分线交直线PQ于点F求证:四边形AECF是矩形2、如图,在矩形中,为对角线(1)用尺规完成以下作图:在上找一点,使,连接,作的平分线交于点;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若,求的度数3、已知:如图,AD是BC上的高线,CE是AB边上的中线,于G(1)若,求线段AC的长;(2)求证:4、如图,在中,对角线AC、BD交于点O,AB=10,AD=8,ACBC,求(1)的面积;(2)AOD的周长5、如图,已知在RtABC中,ACB90,CD是斜边AB上的中线,点E是边BC延长线上一
7、点,连接AE、DE,过点C作CFDE于点F,且DFEF (1)求证:ADCE (2)若CD5,AC6,求AEB的面积-参考答案-一、单选题1、A【解析】【分析】可以设EAD,FAB,根据折叠可得DAFDAF,BAEBAE,用,表示DAF10+,BAE10+,根据四边形ABCD是矩形,利用DAB90,列方程10+10+10+90,求出+30即可求解【详解】解:设EAD,FAB,根据折叠性质可知:DAFDAF,BAEBAE,BAD10,DAF10+,BAE10+,四边形ABCD是矩形DAB90,10+10+10+90,+30,EAFBAD+DAE+FAB,10+,10+30,40则EAF的度数为4
8、0故选:A【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系2、C【解析】【分析】根据矩形的判定:(1)四个角均为直角;(2)对边互相平行且相等;(3)对角线相等且平分,据此即可判断结果【详解】解:A、根据矩形的对角线相等且平分,故错误;B、对边分别相等只能判定四边形是平行四边形,故错误;C、矩形的四个角都是直角,故正确;D、矩形的对角线互相相等且平分,所以垂直与否与矩形的判定无关,故错误故选:C【点睛】本题主要考查的是矩形的判定方法,熟练掌握矩形的判定是解题的关键3、D【解析】【分析】当为直角三角形时,有两种情况:当点F落在
9、矩形内部时连接,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点A、F、C共线,即沿折叠,使点B落在对角线上的点F处,则,可计算出然后利用勾股定理求解即可;当点F落在边上时此时为正方形,由此即可得到答案【详解】解:当为直角三角形时,有两种情况:当点F落在矩形内部时,如图所示连接,在中,ABE沿折叠,使点B落在点F处,BE=EF,当为直角三角形时,只能得到,点A、F、C共线,即ABE沿折叠,使点B落在对角线上的点F处,设BE=EF=x,则EC=BC-BE=8-x,解得,BE=3;当点F落在边上时,如图所示,由折叠的性质可知AB=AF,BE=EF,AEF=B=90,FE
10、C=90,为正方形,综上所述,BE的长为3或6故选D【点睛】本题考查折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等也考查了矩形的性质,正方形的性质与判定以及勾股定理解题的关键是要注意本题有两种情况,需要分类讨论,避免漏解4、B【解析】【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得【详解】解:四边形是平行四边形,在和中,则的面积为,故选:B【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键5、B【解析】【分析】根据直角三角形斜边上中线的性质,可
11、得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2一个直角三角形的周长为3+,AB+BC=3+-2=1+等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2ABBC=4+2,AB2+BC2=AC2=4,2ABBC=2,ABBC=,即三角形的面积为ABBC=故选:B【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出ACBC的值是解此题的关键,值得学习应用6、D【解析】【分析】根据正方形的性质和折叠的性质可得ADDF,
12、AGFD90,于是根据“HL”判定RtADGRtFDG;再由GFGBGAGB12,EBEF,BGE为直角三角形,可通过勾股定理列方程求出AG4,BG8,即可判断;由BEF是等腰三角形,证明EBFDEC,;结合可得AGGF,根据等高的两个三角形的面积的比等于底与底的比即可求出三角形BEF的面积【详解】解:由折叠可知,DFDCDA,DFEC90,DFGA90,在RtADG和RtFDG中,RtADGRtFDG(HL),故正确;正方形边长是12,BEECEF6,设AGFGx,则EGx6,BG12x,由勾股定理得:EG2BE2BG2,即:(x6)262(12x)2,解得:x4,AGGF4,BG8,BG2
13、AG,故正确;EFECEB,EFBEBF,DECDEF,CEFEFBEBF,DECEBF,BF/DE,故正确;SGBEBEBG6824,GFAG4,EFBE6,SBEFSGBE24,故正确综上可知正确的结论的是4个故选:D【点睛】本题考查了图形的翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度7、C【解析】【分析】如图,矩形中,利用三角形的中位线的性质证明,再证明四边形是平行四边形,再证明 从而可得结论.【详解】解:如图,矩形中, 分别为四边的中点, 四边形是平行四边形, 四边形是菱形故选C【点睛】本题考查的是矩形的性质,菱形的判定,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 新人 八年 级数 下册 第十八 平行四边形 综合 训练 试题 答案 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内