《最新人教版九年级数学下册第二十七章-相似专项测试练习题(名师精选).docx》由会员分享,可在线阅读,更多相关《最新人教版九年级数学下册第二十七章-相似专项测试练习题(名师精选).docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十七章-相似专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、根据下列条件,判断ABC与ABC能相似的条件有()CC90,A25,B65;C90,AC6cm,BC4cm,AC
2、9cm,BC6cm;AB10cm,BC12cm,AC15cm,AB150cm,BC180cm,AC225cm;ABC与ABC是有一个角为80等腰三角形A1对B2对C3对D4对2、如图,在平面直角坐标系中,OAB与OCD位似,点O是它们的位似中心,已知A(6,6),C(2,2),则OCD与OAB的面积之比为()A1:1B1:3C1:6D1:93、一种数学课本的宽与长之比为黄金比,已知它的长是26cm,那么它的宽是()cmA26+26B2626C13+13D13134、如图在ABC外任取一点O,连接AO、BO、CO,并取它们的中点D、E、F,得到DEF,则下列说法正确的个数是()ABC与DEF是位
3、似图形;ABC与DEF是相似图形;ABC与DEF的周长比为1:2;ABC与DEF的面积比为4:1A1个B2个C3个D4个5、下列可以判定ABCABC的条件是()AABCB且ACC且AAD以上条件都不对6、如图,以点O为位似中心,将DEF放大后得到ABC,已知OD=1,OA=3若DEF的面积为S,则ABC的面积为( )A2SB3SC4SD9S7、如图,已知直线abc,分别交直线m、n于点A、C、E、B、D、F,AC4,CE6,BD3,则DF的长是( )AB4C6D28、下列图形中,不是位似图形的是( )ABC D9、下列图形中,ABC与DEF不一定相似的是( )ABCD10、如图,线段两个端点的
4、坐标分别为,以原点为位似中心,在第一象限内将线段缩小为原来的后得到线段,则端点的坐标为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,ACB=90,BC=3,AC=4,F为AB上的点,联结CF.将ACF沿直线CF翻折,点A的对称点为E,若EFCB,则FE=_2、如图,在的正方形网格中,每个小正方形的边长均为1,点A、B、C、D均在格点上,AC与BD相交于点O,则的面积与的面积比为_3、已知B是线段AC的黄金分割点,ABBC,若AC6,则AB的长为_(结果保留根号)4、若D为中边上一点,且EDBC交于E,若与的相似比为,则_5、如图,矩
5、形,对角线与双曲线交于点,若,则矩形的面积为_三、解答题(5小题,每小题10分,共计50分)1、如图,已知EACDAB,DB,求证:ABCADE2、如图,在平面直角坐标系中,的顶点坐标分别为,(1)请以原点为位似中心,画出,使它与的相似比为,变换后点、的对应点分别为点、,点在第一象限,并写出点坐标_;(2)若为线段上的任一点,则变换后点的对应点的坐标为_3、如图,抛物线yax2+bx+6与x轴交于A(2,0),B(8,0)两点,与y轴交于点C(1)求抛物线的解析式;(2)点P是抛物线上一动点,当PCBBCO时,求点P的横坐标4、如图,在中,平分交于D(1)求证:(2)若,求的长5、AB是O的弦
6、,ODAB交O于点F,P是OF延长线上一点,连接PA、PB、AF、OA(1)如图1,若OAAP,求证:DAFPAF;(2)如图2,若DAFAPF,AB16,OP22,求OD的长-参考答案-一、单选题1、C【解析】【分析】根据相似三角形常用的判定方法对各个选项进行分析从而得到答案【详解】解:(1)CC90,A25B65CC,BB(2)C90,AC6cm,BC4cm, ,AC9,BC6,(3)AB10cm,BC12cm,AC15cm,AB150cm,BC180cm,AC225cm;(4)没有指明80的角是顶角还是底角无法判定两三角形相似共有3对故选:C【点睛】此题主要考查相似三角形的判定方法:(1
7、)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似2、D【解析】【分析】由A(6,6)可知OA长度为,C(-2,-2)可知OC长度为,得,所以OCD与OAB面积比为1:9.【详解】点A坐标为(6,6),OA=点C坐标为(-2,-2)OC=1:9故选:D【点睛】本题考查了两个位似图形的相似比,与相似三角形性质相同,相似三角形的面积比是相似比的平方3、D【解析】【分析】根据一种数学课本的宽与长之比为黄金比,即可得到宽:长,由此求解即可【详解】解:一种数学课本的宽与长之比为黄金比,宽:长
8、,长是26cm,宽,故选D【点睛】本题主要考查了黄金比,解题的关键在于能够熟练掌握黄金分割比例4、C【解析】【分析】由题意根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案【详解】解:根据位似的定义可得,与是位似图形,也就是特殊的相似图形,故正确;点D、E、F分别是、的中点,与的位似比为21,周长比为21,面积比为41,故错误,正确故选:C【点睛】本题主要考查位似图形的性质,熟练掌握位似图形的性质是解决问题的关键5、C【解析】【分析】根据相似三角形的判定定理可得出答案
9、【详解】A、只有一组角对应相等的两个三角形不一定相似;故A不符合题意;B、两边对应成比例,但夹角不相等的两个三角形不一定相似,故B不符合题意;C、两边对应成比例且夹角相等的两个三角形相似,故C符合题意;故选:C【点睛】本题考查了相似三角形的判定定理,熟练掌握定理内容是解题的关键6、D【解析】【分析】首先由OD=1,OA=3,求出DEF和ABC的位似比为1:3,进而得到相似比为1:3,即可根据相似三角形面积比等于相似比的平方求出ABC的面积【详解】解:OD=1,OA=3,DEF和ABC的位似比为1:3,DEF和ABC的相似比为1:3,即,ABC的面积为故选:D【点睛】此题考查了位似三角形的性质,
10、相似三角形的性质,解题的关键是熟练掌握位似三角形的性质位似三角形的位似比等于相似比相似三角形性质:相似三角形对应边成比例,对应角相等相似三角形的相似比等于周长比,相似三角形的相似比等于对应高的比,对应角平分线的比以及对应中线的比,相似三角形的面积比等于相似比的平方7、A【解析】【分析】由直线,根据平行线分线段成比例定理,即可得,又由,即可求得的长即可【详解】解:,解得:,故选择A【点睛】此题考查了平行线分线段成比例定理题目比较简单,解题的关键是注意数形结合思想的应用8、D【解析】【分析】对应顶点的连线相交于一点的两个相似多边形叫位似图形【详解】解:根据位似图形的概念,A、B、C三个图形中的两个
11、图形都是位似图形;D中的两个图形不符合位似图形的概念,两个三角形不相似,故不是位似图形故选D【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点9、A【解析】【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得到:ACB=90,所以
12、根据ACB=CDB=90,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理10、A【解析】【分析】利用位似图形的性质结合两图形的位似比进而得出C点坐标【详解】解:线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,端点C的横坐标和纵坐标都变为A点的一半,端点C的坐标为:(3,3)故选:A【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键二、填空题1、2【解析】【分析】根据勾股定理
13、求出,由等面积法求出,根据相似三角形判定证明,由性质建立等式求出即可【详解】解:根据题意作图如下:由勾股定理得:,根据折叠的性质得:,解得:,即,解得:,故答案是:2【点睛】本题考查了折叠问题,三角形相似、勾股定理,解题的关键是添加辅助线,构造相似三角形2、#14【解析】【分析】根据题意得:ABCD,从而得到AOBCOD,又由 ,再根据相似三角形的面积比等于相似比的平方,即可求解【详解】解:根据题意得:ABCD,AOBCOD, , , 故答案为:【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的面积比等于相似比的平方是解题的关键3、#【解析】【分析】根据黄金分割的定义得到,把A
14、C6代入计算即可解题【详解】解:B是线段AC的黄金分割点, AC64、5【解析】【分析】由题意直接根据相似三角形的相似比进行分析即可得出答案.【详解】解:EDBC, 与的相似比为,,,.故答案为:5.【点睛】本题考查相似三角形的相似比,熟练掌握相似三角形的相似比即对应边所得的比例是解题的关键.5、50【解析】【分析】根据反比例函数系数k的几何意义可得SODE9,利用相似三角形的性质,可得SADE:SOBA9:25,进而求出SOBA25,由矩形的性质得到答案【详解】解:过点D作DEOA,垂足为E,则SODE189,是矩形ABAODEAB,ODEOBA,SADE:SOBA9:25,SOBA25,矩
15、形OABC的面积为25250,故答案为:50【点睛】本题考查反比例函数系数k的几何意义,相似三角形以及矩形的性质,理解反比例函数系数k的几何意义以及相似三角形的性质是解决问题的关键三、解答题1、见解析【解析】【分析】由EACDAB,可推出BAC=DAE,再由B=D,即可证明ABCADE【详解】解:EACDAB,EAC+DAC=DAB+DAC,即BAC=DAE,又B=D,ABCADE【点睛】本题主要考查了相似三角形的判定,熟知相似三角形的判定条件是解题的关键2、a-2b+3c=6-18+36=【点睛】本题考查了比例关系,解方程及求代数式的值,由比例关系设a=2k,则b=3k,c=4k是关键24(
16、1)图见解析,;(2)【解析】【分析】(1)根据相似比可确定三点的坐标,从而可画出并写出点坐标;(2)根据相似比即可确定点的坐标【详解】(1)如图所示:ABC即为所求,;故答案为:(2)若P(a,b)为线段BC上的任一点,则变换后点P的对应点P的坐标为:故答案为:【点睛】本题考查了在坐标系中作位似图形,求位似图形对应的坐标,关键是掌握位似图形的含义3、(1);(2)或【解析】【分析】(1)由题意代入A(2,0),B(8,0)两点求出a、b的值,即可得出抛物线的解析式;(2)根据题意分点P在BC下方的抛物线上和点P在BC上方的抛物线上两种情况,结合全等三角形的判定与性质以及相似三角形的判定与性质
17、进行分析即可得出答案.【详解】解:(1)由题意代入A(2,0),B(8,0)两点,可得:,解得:,所以抛物线的解析式为:;(2)当点P在BC下方的抛物线上时,此时PCBBCO 即CP平分BCO,如图,作CP平分BCO,交x轴于点D,过D作垂足为E,CP平分BCO,,设,,勾股定理可得:,即,解得:,即,D的坐标为(3,0),设CD的解析式为:,代入C、D可得:,解得:,所以CD的解析式为:,P为直线CD与抛物线的交点,联立可得:,解得:(舍去)或,即的横坐标为,当点P在BC上方的抛物线上时,此时PCBBCO,如图,作PCBBCO交抛物线于点P,延长DE交CP于点F,过E作EHx轴交于点H,PC
18、BBCO,,可得,设F为,由可得,解得:,即F为,设CF的解析式为:,代入C、F可得:,解得:,所以CD的解析式为:,P为直线CF与抛物线的交点,联立可得:,解得:(舍去)或,即的横坐标为,综上所述的横坐标为或.【点睛】本题考查二次函数的综合问题,熟练掌握待定系数法求二次函数解析式和全等三角形的判定与性质以及相似三角形的判定与性质和角平分线性质是解题的关键.4、(1)见解析;(2)【解析】【分析】(1)由,得,由平分得,故可证;(2)设,则,由相似三角形的性质即可得出答案【详解】(1),平分,DBC=A;(2)设,即,解得:或(负值不合题意,舍去),【点睛】本题考查相似三角形的判定与性质,掌握
19、相似三角形的判定与性质是解题的关键5、(1)证明见解析;(2)6【解析】【分析】(1)在ADF中有OFA+DAF=90,在OAF中有OAF+PAF=90,因为AO=OF=r,由等角对等边有OFA=OAF,故DAF=PAF(2)由题意可知ADFDAP,故有ADDF=DPAD,设OD=x,在OAD中由勾股定理有AO2=OD2+AD2则有AO=x2+64,DF=OF-OD=x2+64-x,代入ADDF=DPAD,有82=(x2+64-x)(22-x),解得x=6,x=703(舍)【详解】(1)OFA+DAF=90,OAF+PAF=90又AO=OF=rOFA=OAFDAF=PAF(2)由DAFAPF,ADF=ADPADFDAPADDF=DPAD设DF=x在OAD中由勾股定理有AO2=OD2+AD2即AO=x2+64,DF=OF-OD=x2+64-x则82=(x2+64-x)(22-x)64=(x2+64-x)(x2+64+x)(x2+64+x)(22-x)64=(64(x2+64+x)(22-x)x2+64+x=(22-x)x2+64=22-2xx2+64=4x2-88x+484化简得3x2-88x+420=0解得x=6,x=703(舍)【点睛】本题考查了圆与三角形的综合问题,由相似三角形成比例以及勾股定理列两个方程联立求解是解题的关键
限制150内