《最新人教版九年级数学下册第二十八章-锐角三角函数综合测评试题.docx》由会员分享,可在线阅读,更多相关《最新人教版九年级数学下册第二十八章-锐角三角函数综合测评试题.docx(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、图是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图所
2、示的四边形若,则的值为( )ABCD2、如图,射线,点C在射线BN上,将ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,设,若y关于x的函数图象(如图)经过点,则的值等于( )ABCD3、在正方形网格中,每个小正方形的边长都是1,BAC的位置如图所示,则sinBAC的值为()ABCD4、如图,琪琪一家驾车从地出发,沿着北偏东的方向行驶,到达地后沿着南偏东的方向行驶来到地,且地恰好位于地正东方向上,则下列说法正确的是( )A地在地的北偏西方向上B地在地的南偏西方向上CD5、三角形在正方形网格纸中的位置如图所示,则tan的值是( )A12B43C35D456
3、、如图,点为边上的任意一点,作于点,于点,下列用线段比表示的值,正确的是( )ABCD7、如图,在ABC中,C=90,ABC=30,D是AC的中点,则tanDBC的值是( )A B C D8、如图,在的网格中,A,B均为格点,以点A为圆心,AB的长为半径作弧,图中的点C是该弧与格线的交点,则的值是( )ABCD9、在RtABC中,C =90,sinA=,则cosA的值等于( )ABCD10、如图,在RtABC中,C90,BC1,以下正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的
4、格点上,线段AB,PQ相交于点E,则tanAEP_2、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,则图中阴影部分的面积为_3、如图,在矩形ABCD中,点E在边AB上,BEC与FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点若BMBE,MG2,则BN的长为 _,sinAFE的值为 _4、矩形ABCD中,E为边AB上一点,将沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN若,(1)矩形ABCD的面积为_;(2)的值为_5、如图,矩形ABCD中,AB4,AEAD,将ABE沿BE折叠后得到GBE,延长B
5、G交CD于F点,若F为CD中点,则BC的长为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在RtABC中,ACB90,D为AB的中点,以CD为直径的O分别交AC,BC于点E,F两点,过点F作FGAB于点G(1)求证:FG是O的切线;(2)若AC3,CD2.5,求FG的长2、在O中,四边形ABCD是平行四边形(1)求证:BA是O的切线;(2)若AB6,求O的半径;求图中阴影部分的面积3、如图,在中,点P从点出发,沿折线向终点C运动,点P在边、边上的运动速度分别为、在点P的运动过程中,过点P作所在直线的垂线,交边或边于点Q,以为一边作矩形,且,与在的同侧设点P的运动时间为t(秒),矩
6、形与重叠部分的面积为(1)求边的长(2)当时, ,当时, (用含t的代数式表示)(3)当点M落在上时,求的值(4)当矩形与重叠部分图形为四边形时,求S与的函数关系式4、计算: 2sin60+tan45cos30tan605、-参考答案-一、单选题1、A【分析】在中,可得的长度,在中,代入即可得出答案【详解】解:,在中,在中,.故选:A【点睛】本题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法进行计算是解决本题的关键.2、D【分析】由题意可得四边形ABQP是平行四边形,可得APBQx,由图象可得当x9时,y2,此时点Q在点D下方,且BQx9时,y2,如图所示,可求BD7,由折叠的性质可
7、求BC的长,由锐角三角函数可求解【详解】解:AMBN,PQAB,四边形ABQP是平行四边形,APBQx,由图可得当x9时,y2,此时点Q在点D下方,且BQx9时,QD=y2,如图所示,BDBQQDxy7,将ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,ACBN,BCCDBD, cosB,故选:D【点睛】本题考查了平行四边形的判定与性质,折叠的性质,锐角三角函数等知识理解函数图象上的点的具体含义是解题的关键3、D【分析】先求出ABC的面积,以及利用勾股定理求出,利用面积法求出,进而求解即可【详解】解:如图所示,过点B作BDAC于D,由题意得:,故选D【点睛】本题主要考查了勾股定理和求正
8、弦值,解题的关键在于能够正确作出辅助线,构造直角三角形4、B【分析】根据题意可知,由此即可得到即可判断A;由可以判断B;由可以判断C;求出即可判断D【详解】解:如图所示:由题意可知,即在处的北偏西,故A不符合题意;,地在地的南偏西方向上,故B不符合题意;,故C错误,故D不符合题意故选B【点睛】本题考查的是解直角三角形和方向角问题,熟练掌握方向角的概念是解题的关键5、A【分析】根据在直角三角形中,正切值等于对边比上邻边进行求解即可【详解】解:如图所示,在直角三角形ABC中ACB=90,AC=2,BC=4,tan=ACBC=24=12,故选A【点睛】本题主要考查了求正切值,解题的关键在于能够熟练掌
9、握正切的定义6、C【分析】根据正弦值等于对边与斜边的比,可得结论【详解】解:在中,;在中,故选:【点睛】本题考查了解直角三角形,掌握直角三角形的边角间关系是解决本题的关键7、D【分析】根据正切的定义以及,设,则,结合题意求得,进而即可求得【详解】解:在ABC中,C=90,ABC=30,设,则, D是AC的中点,故选D【点睛】本题考查了正切的定义,特殊角的三角函数值,掌握正切的定义是解题的关键8、B【分析】利用,得到BAC=DCA,根据同圆的半径相等,AC=AB=3,再利用勾股定理求解 可得tanACD=,从而可得答案.【详解】解:如图, , BAC=DCA 同圆的半径相等, AC=AB=3,而
10、 在RtACD中,tanACD= tanBAC=tanACD= 故选B【点睛】本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键9、A【分析】由三角函数的定义可知sinA=,可设a=4,c=5,由勾股定理可求得b=3,再利用余弦的定义代入计算即可【详解】解:sinA=,可设a=4,c=5,由勾股定理可求得b=3,cosA=,故选:A【点睛】本题主要考查三角函数的定义,掌握正弦、余弦函数的定义是解题的关键10、C【分析】根据勾股定理求出AB,三角函数的定义求相应锐角三角函数值即可判断【详解】解:在RtABC中,C90,BC1,根据勾股定理AB=,cosA=,选项A不正
11、确;sinA,选项B不正确;tanA,选项C正确;cosB,选项D不正确故选:C【点睛】本题主要考查锐角三角函数的定义,勾股定理,掌握锐角三角函数定义是解题的关键二、填空题1、#【解析】【分析】如图,设小正方形边长为1,根据网格特点,PQF=CBF,可证得PQBC,则QEB=ABC,即AEP=ABC,分别求出AC、BC、AB,根据勾股定理的逆定理可判断ABC是直角三角形,求出tanABC即可【详解】解:如图,设小正方形边长为1,根据网格特点,PQF=CBF=45,PQBC,QEB=ABC,AEP=QEB,AEP=ABC,AC2+BC2=AB2,ABC是直角三角形,且ACB=90,tanABC=
12、,tanAEP=tanABC=,故答案为: 【点睛】本题考查网格性质、勾股定理及其逆定理、平行线的判定与性质、正切、对顶角相等,熟知网格特点,熟练掌握勾股定理及其逆定理是解答的关键2、【解析】【分析】由正六边形ABCDEF的边长为2,可得AB=BC=2,ABC=BAF=120,进而求出BAC=30,CAE=60,过B作BHAC于H,由等腰三角形的性质和含30直角三角形的性质得到AH=CH,BH=1,在RtABH中,由勾股定理求得AH=,得到AC=2,根据扇形的面积公式即可得到阴影部分的面积【详解】解:正六边形ABCDEF的边长为2, =120,ABC+BAC+BCA=180,BAC=(180-
13、ABC)=(180-120)=30,过B作BHAC于H,AH=CH,BH=AB=2=1,在RtABH中,AH= =,AC=2 ,同理可证,EAF=30,CAE=BAF-BAC-EAF=120-30-30=60, 图中阴影部分的面积为2,故答案为:【点睛】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键3、 4; #【解析】【分析】根据题意连接BF,FM,由翻折及BM=ME可得四边形BEFM为菱形,再由菱形对角线的性质可得BN=BA先证明AEFNMF得AE=NM,再证明FMNCGN可得,进而求解即可【详解】解:BM=BE,BEM=BME,ABC
14、D,BEM=GCM,又BME=GMC,GCM=GMC,MG=GC=2,G为CD中点,CD=AB=4连接BF,FM,由翻折可得FEM=BEM,BE=EF,BM=EF,BEM=BME,FEM=BME,EFBM,四边形BEFM为平行四边形,BM=BE,四边形BEFM为菱形,EBC=EFC=90,EFBG,BNF=90,BF平分ABN,FA=FN,RtABFRtNBF(HL),BN=AB=4FE=FM,FA=FN,A=BNF=90,RtAEFRtNMF(HL),AE=NM,设AE=NM=x,则BE=FM=4-x,NG=MG-NM=2-x,FMGC,FMNCGN,即,解得:(舍)或,故答案为:4;.【点
15、睛】本题考查矩形的翻折问题和相似与全等三角形问题,解题关键是连接辅助线通过全等三角形及相似三角形的判定及性质求解4、 【解析】【分析】(1)矩形ABCD中,由折叠可得DF=AD=3,在中,用勾股定理求得,即可求得矩形ABCD的面积;(2)由折叠可得,矩形ABCD中,四点共圆,故,设,在中,由勾股定理得: ,即可求的值.【详解】(1)矩形ABCD中,由折叠可得DF=AD=3,在中,矩形ABCD的面积=,故答案为:;(2)将沿DE折叠,使点A的对应点F恰好落在边BC上,矩形ABCD中,四点共圆,设,则,在中,由勾股定理得:,即,解得,=.故答案为:【点睛】本题考查了勾股定理、矩形的性质、锐角三角函
16、数等知识,掌握相应的定理是解答此题的关键.5、4【解析】【分析】延长BF交AD的延长线于点H,证明BCFHDF(AAS),由全等三角形的性质得出BC=DH,由折叠的性质得出A=BGE=90,AE=EG,设AE=EG=x,则AD=BC=DH=3x,得出EH=5x,由锐角三角函数的定义及勾股定理可得出答案【详解】解:延长BF交AD的延长线于点H,四边形ABCD是矩形,AD=BC,ADBC,A=BCF=90,H=CBF,在BCF和HDF中,BCFHDF(AAS),BC=DH,将ABE沿BE折叠后得到GBE,A=BGE=90,AE=EG,EGH=90,AE=AD,设AE=EG=x,则AD=BC=DH=
17、3x,ED=2x,EH=ED+DH=5x,在RtEGH中,sinH=,sinCBF=,AB=CD=4,F为CD中点,CF=2,BF=10,经检验,符合题意,BC=4,故答案为:4【点睛】本题考查了矩形的性质,折叠的性质,全等三角形的判定与性质,解直角三角形,勾股定理,熟练掌握折叠的性质是解题的关键三、解答题1、(1)证明见解析;(2)【解析】【分析】(1)如图,连接OF,根据直角三角形的性质得到CDBD,得到DBCDCB,根据等腰三角形的性质得到OFCOFC,得到OFCDBC,推出OFG90,即可求解;(2)连接DF,根据勾股定理得到BC,根据圆周角定理得出DFC90,根据三角形函数的定义即可
18、得出结论【详解】(1)证明:如图,连接OF,ACB90,D为AB的中点,CDBD,DBCOCF,OFOC,OFCOCF,OFCDBC,OFDB,OFG+DGF180,FGAB,DGF90,OFG90,OF为半径,FG是O的切线;(2)解:如图,连接DF,CD2.5,AB2CD5,BC,CD为O的直径,DFC90,FDBC,DBDC,BFBC2,sinABC,即,FG【点睛】本题主要考查了切线的判定与性质,等腰三角形的性质,勾股定理,正弦的定义,准确分析计算是解题的关键2、(1)证明见解析;(2),【解析】【分析】(1)连接AO,由,四边形ABCD是平行四边形,即得推得为等边三角形,即可得BAO
19、=BAC+CAO=90,即BA是O的切线(2)由(1)有A0=将阴影面积拆为相等的两部分,其中左侧部分为扇形ACO面积减去三角形ACO面积,由扇形面积公式,等边三角形面积公式计算后乘2即可【详解】(1)证明:连接OA四边形ABCD是平行四边形AD/BEADC=DCO又ACD=ADCACO=ACD +DCO=2ADC又2ADC=AO=AC又OC=AO为等边三角形ACO=CAO=60,ACD =DCO=30又AB/CDBAC=ACD=30BAO=BAC+CAO=30+60=90BA是O的切线(2)由(1)可知BAO=90,BOA=60AO=连接AO,与CD交于点MAC=,OAC=60CM=AO=,
20、AOC=60【点睛】本题是一道圆内的综合问题,考察了证明某线是切线、平行四边形性质、等弧的性质、解直角三角形、等边三角形性质、勾股定理、扇形面积公式等,需熟练掌握这些性质及定理,而作出正确的辅助线是解题的关键3、(1);(2);(3)或;(4)【解析】【分析】(1)利用勾股定理直接计算即可;(2)先求解再用含的代数式表示 再利用三角函数建立方程求解两种情况下的即可;(3)分两种情况讨论:如图,当在上,落在上,如图,当在上,落在上,则重合,再利用矩形的性质结合三角函数可得结论;(4)如图,当第一次落在上,即时,此时重叠部分的面积为四边形, 当时,重叠部分为四边形,如图, 当时,此时重叠部分的面积
21、为四边形,如图,当第2次落在上时, 当时,此时重叠部分的面积为四边形,再利用图形的性质列面积函数关系式即可.【详解】解:(1) , (2)当时,在上, 而四边形为矩形, 当时,在上,如图,此时, , , 故答案为: (3)如图,当在上,落在上,此时 解得: 如图,当在上,落在上,则重合, 同理可得: 解得: (4)当第一次落在上,即时,此时重叠部分的面积为四边形,如图,此时 当落在上时,如图,同理可得: 解得: 当时,重叠部分为四边形,如图,同理可得: 如图,当落在上时,同理可得: 而 解得: 当时,此时重叠部分的面积为四边形,如图,此时 当第2次落在上时, 当时,此时重叠部分的面积为四边形,如图,同理可得: 综上:【点睛】本题考查的是平行四边形的性质,矩形的判定与性质,列面积函数关系式,锐角三角函数的应用,清晰的分类讨论是解题的关键.4、【解析】【分析】根据特殊角的锐角三角形函数值进行混合运算即可【详解】解:原式 【点睛】本题考查了特殊角的锐角三角形函数值的混合运算,牢记特殊角的三角函数值是解题的关键5、【解析】【分析】先去掉绝对值,再计算三角函数值和零指数幂,然后化简算术平方根后可以得解【详解】解:原式=【点睛】本题考查实数的运算,熟练掌握特殊角的三角函数值、零指数幂的计算和算术平方根的化简和计算是解题关键
限制150内