《2022年沪科版九年级数学下册第24章圆专项测评试题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年沪科版九年级数学下册第24章圆专项测评试题(含详解).docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,CAB=64,将ABC在平面内绕点A旋转到ABC的位置,使CCAB,则旋转角的度数为( )A64B5
2、2C42D362、如图,在中,将绕原点O逆时针旋转90,则旋转后点A的对应点的坐标是( )ABCD3、平面直角坐标系中点关于原点对称的点的坐标是( )ABCD4、已知O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与O的位置关系是( )A相离B相切C相交D相交或相切5、如图,点P是等边三角形ABC内一点,且PA3,PB4,PC5,则APB的度数是( )A90B100C120D1506、下列图形中,可以看作是中心对称图形的是( )ABCD7、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定8、在下列图形中,既是中心对称图形又是轴对称图形的是( )ABCD9、如图,ABC内接
3、于O,BAC30,BC6,则O的直径等于()A10B6C6D1210、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,则阴影部分的面积为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、斛是中国古代的一种量器.据汉书 .律历志记载:“斛底,方而圜(hun)其外,旁有庣(tio)焉”意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为_尺2、如图,已知,在中,将绕
4、点A逆时针旋转一个角至位置,连接BD,CE交于点F(I)求证:;(2)若四边形ABFE为菱形,求的值;(3)在(2)的条件下,若,直接写出CF的值3、如图,PA,PB分别切O于点A,B,Q是优弧上一点,若P=40,则Q的度数是_4、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为_cm5、如图,在平面直角坐标系中,点N是直线上动点,M是上动点,若点C的坐标为,且与y轴相切,则长度的最小
5、值为_三、解答题(5小题,每小题10分,共计50分)1、下面是“过圆外一点作圆的切线”的尺规作图过程已知:O和O外一点P求作:过点P的O的切线作法:如图,(1)连接OP;(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;(3)作直线MN,交OP于点C;(4)以点C为圆心,CO的长为半径作圆,交O于A,B两点;(5)作直线PA,PB直线PA,PB即为所求作O的切线完成如下证明:证明:连接OA,OB,OP是C直径,点A在C上OAP=90(_)(填推理的依据)OAAP又点A在O上,直线PA是O的切线(_)(填推理的依据)同理可证直线PB是O的切线2、如图,四边形ABCD内接于O,
6、AC是直径,点C是劣弧BD的中点(1)求证:(2)若,求BD3、新定义:如图,已知,在内部画射线OC,得到三个角,分别为、若这三个角中有一个角是另外一个角的2倍,则称射线OC为的“幸运线”(本题中所研究的角都是大于0而小于180的角)(阅读理解)(1)角的平分线_这个角的“幸运线”;(填“是”或“不是”)(初步应用)(2)如图,射线OC为的“幸运线”,则的度数为_;(直接写出答案)(解决问题)(3)如图,已知,射线OM从OA出发,以每秒10的速度绕O点顺时针旋转,同时,射线ON从OB出发,以每秒15的速度绕O点顺时针旋转,设运动的时间为t秒若OM、ON、OB三条射线中,一条射线恰好是以另外两条
7、射线为边的角的“幸运线”,求运动的时间t的值(实际运用)(4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合问小丽帮妈妈取包裹用了多少分钟?4、如图,是的直径,弦,垂足为E,弦与弦相交于点G,且,过点C作的垂线交的延长线于点H(1)判断与的位置关系并说明理由;(2)若,求弧的长5、如图,为的直径,为的切线,弦,直线交的延长线于点,连接求证:(1);(2)-参考答案-一、单选题1、B【分析】先根据平行线的性质得ACC=CAB=64,再根据旋转的性质得CAC等于旋转角,AC=
8、AC,则利用等腰三角形的性质得ACC=ACC=64,然后根据三角形内角和定理可计算出CAC的度数,从而得到旋转角的度数【详解】解:CCAB,ACC=CAB=64ABC在平面内绕点A旋转到ABC的位置,CAC等于旋转角,AC=AC,ACC=ACC=64,CAC=180-ACC-ACC=180-264=52,旋转角为52故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等2、C【分析】过点A作ACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到 ,可得到点 ,再根据旋转的性质,即可求解【详解】解:如图,过点
9、A作ACx轴于点C, 设 ,则 , , , ,解得: , , ,点 ,将绕原点O顺时针旋转90,则旋转后点A的对应点的坐标是,将绕原点O逆时针旋转90,则旋转后点A的对应点的坐标是故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型3、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键4、B【分析】圆的半径为 圆心O到直线l的距离为 当时,直线与圆
10、相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解: O的直径为10cm,圆心O到直线l的距离为5cm, O的半径等于圆心O到直线l的距离, 直线l与O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.5、D【分析】将绕点逆时针旋转得,根据旋转的性质得,则为等边三角形,得到,在中,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数【详解】解:为等边三角形,可将绕点逆时针旋转得,如图,连接,为等边三角形,在中,为直角三角形,且,故选:D【点睛】本题考查了旋转的性质、等边三角形,解题的关键是
11、掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等6、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解【详解】A不是中心对称图形,故本选项不符合题意;B是中心对称图形,故本选项符合题意;C不是中心对称图形,故本选项不符合题意;D不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合7、C【分析】根据O的半径r=4,且点A到圆心O的距离d=5知dr,据此可得答案【详解】解:O的半径r
12、=4,且点A到圆心O的距离d=5,dr,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr8、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的
13、图形叫作轴对称图形;把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合叫作中心对称图形.9、D【分析】连接OB,OC,根据圆周角定理求出BOC的度数,再由OB=OC判断出OBC是等边三角形,由此可得出结论【详解】解:连接OB,OC,BAC=30,BOC=60OB=OC,BC=6,OBC是等边三角形,OB=BC=6O的直径等于12故选:D【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键10、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案【详解】解:根据题意,如图:AB是的直径,O
14、D是半径,AE=CE,阴影CED的面积等于AED的面积,;故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算二、填空题1、【分析】如图,根据四边形CDEF为正方形,可得D=90,CD=DE,从而得到CE是直径,ECD=45,然后利用勾股定理,即可求解【详解】解:如图, 四边形CDEF为正方形,D=90,CD=DE,CE是直径,ECD=45,根据题意得:AB=2.5, , , ,即此斛底面的正方形的边长为 尺故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键2、(1)见解析;(2)12
15、0;(3)【分析】(1)根据旋转的性质和全等三角形的判定解答即可;(2)根据等腰三角形的性质求得ABD=90,BAE=+30,根据菱形的邻角互补求解即可;(3)连接AF,根据菱形的性质和全等三角形的性质可求得FAC=45,FCA=30,过F作FGAC于G,设FG=x,根据等腰直角三角形的性质和含30角的直角三角形的性质求解即可【详解】解:(1)由旋转得:AB=AD,AC=AE,BAD=CAE=,AB=AC,AB=AC=AD=AE,在ABD和ACE中,ABDACE(SAS);(2)AB=AD,BAD=,BAC=30,ABD=(180BAD)2=(180)2=90,BAE=+30,四边形ABFE是
16、菱形,BAE+ABD=180,即+30+90=180,解得:=120;(3)连接AF,四边形ABFE是菱形,BAE=+30=150,BAF=BAE=75,又BAC=30,FAC=7530=45,ABDACE,FCA=ABD=90=30,过F作FGAC于G,设FG=x,在RtAGF中,FAG=45,AGF=90,AFG=FAG=45,AGF是等腰直角三角形,AG=FG=x,在在RtAGF中,FCG=30,FGC=90,CF=2FG=2x,AC=AB=2,又AG+CG=AC,解得:,CF=2x= 【点睛】本题考查全等三角形的判定与性质、旋转的性质、菱形的性质、等腰三角形的判定与性质、含30角的直角
17、三角形的性质、三角形的内角和定理、解一元一次方程等知识,熟练掌握相关知识的联系与运用是解答的关键3、70度【分析】连接OA、OB,根据切线性质可得OAP=OBP=90,再根据四边形的内角和为360求得AOB,然后利用圆周角定理求解即可【详解】解:连接OA、OB,PA,PB分别切O于点A,B,OAP=OBP=90,又P=40,AOB=360909040=140,Q=AOB=70,故答案为:70【点睛】本题考查切线性质、四边形内角和为360、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键4、【分析】如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和
18、垂径定理求解即可【详解】解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,则ODMN,MD=DN,在RtODM中,OM=180cm,OD=60cm,cm,cm,即该球在大圆内滑行的路径MN的长度为cm,故答案为:【点睛】本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键5、-2【分析】由图可知,当CNAB且C、M、N三点共线时,长度最小,利用勾股定理求出CN的长,故可求解【详解】由图可知,当CNAB且C、M、N三点共线时,长度最小直线AB的解析式为当x=0时,y=5,当y=0时,x=5B(0,5),A(5,0)AO=BO,AOB是等
19、腰直角三角形BAO=90当CNAB时,则ACN是等腰直角三角形CN=ANCAC=7AC2=CN2+AN2=2CN2CN=当 C、M、N三点共线时,长度最小即MN=CN-CM=-2故答案为:-2【点睛】此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解三、解答题1、直径所对的圆周角是直角 经过半径的外端并且垂直于这条半径的直线是圆的切线 【分析】连接OA,OB,根据圆周角定理可知OAP=90,再依据切线的判定证明结论;【详解】证明:连接OA,OB,OP是C直径,点A在C上,OAP=90(直径所对的圆周角是直角),OAAP又点A在O上,直线PA是O的切线
20、(经过半径的外端并且垂直于这条半径的直线是圆的切线),同理可证直线PB是O的切线,故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线2、(1)见详解;(2)【分析】(1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;(2)由题意易得,然后由(1)可知ABD是等边三角形,进而问题可求解【详解】(1)证明:AC是直径,点C是劣弧BD的中点,AC垂直平分BD,;(2)解:,ABD是等边三角形,【点睛】本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及圆周角定理是解题的关键3、(1)是;(2)16或24或32;(
21、3)2或或;(4)【分析】(1)根据幸运线定义即可求解;(2)分3种情况,根据幸运线定义得到方程求解即可;(3)根据幸运线定义得到方程求解即可;(4)利用时针1分钟走,分针1分钟走,可解答问题【详解】解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)设AOC=x,则BOC=2x,由题意得,x+2x=48,解得x=16,设AOC=x,则BOC=x,由题意得,x+x=48,解得x=24,设AOC=x,则BOC=x,由题意得,x+x=48,解得x=32,故答案为:16或24或32;(3)OB是射线OM与ON的幸运线,则BOM=MON,即50-10t=(50-10t+15t),解得t=
22、2;BOM=MON,即50-10t=(50-10t+15t),解得t=;BOM=MON,即50-10t=(50-10t+15t),解得t=;故t的值是2或或;(4)时针1分钟走,分针1分钟走,设小丽帮妈妈取包裹用了x分钟,则有0.5x+330=6x,解得:x=【点睛】本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力理解“幸运线”的定义是解题的关键4、(1)相切,见解析(2)【分析】(1)连接OC、OD、AC,OC交AF于点M,根据AGCG,CDAB,可得,从而OCAF,再由AFB90,可得CHAF,即可求证;(2)先证明四边形CMFH为矩形,可得OCAF,CMHF2,从而得
23、到AMFM,进而得到OMBF2,可得到CMOM,进而得到 OC=4,AM垂直平分OC,可证得AOC为等边三角形,即可求解(1)解: CH与O相切理由如下:如图,连接OC、OD、AC,OC交AF于点M, AGCG,ACGCAG,CDAB,OCAF,AB为直径,AFB90,BHCH,CHAF,OCCH,OC为半径,CH为O的切线;(2)解:由(1)得:BHCH,OCCH,OCBH,CHAF,四边形CMFH为平行四边形,OCCH,OCH=90,四边形CMFH为矩形,OCAF,CMHF2,AMFM,点O为AB的中点,OMBF2,CM=OM,OC=4,AM垂直平分OC,ACAO,而AOOC,ACOCOA,,AOC为等边三角形,AOC60,AODAOC60,COD120,弧CD的长度为【点睛】本题主要考查了圆的基本性质,垂径定理,切线的判定,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键5、(1)见解析;(2)见解析【分析】(1)连接,根据,可证从而可得,即可证明,故;(2)证明,可得,即可证明【详解】证明:(1)连接,如图:为的直径,为的切线,在和中,为的直径,即, ,即,;(2)由(1)知:,又, ,【点睛】本题考查圆中的相似三角形判定与性质,涉及三角形全等的判定与性质,解题的关键是证明,从而得到
限制150内