2022年最新浙教版初中数学七年级下册第四章因式分解章节练习练习题.docx
《2022年最新浙教版初中数学七年级下册第四章因式分解章节练习练习题.docx》由会员分享,可在线阅读,更多相关《2022年最新浙教版初中数学七年级下册第四章因式分解章节练习练习题.docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第四章因式分解章节练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列因式分解正确的是( )A.3ab26ab3a(b22b)B.x(ab)y(ba)(ab)(xy)C.a2+2ab4b2(a2b)2D.a2+a(2a1)22、已知,那么的值为( )A.3B.6C.D.3、下列各式从左到右的变形中,属于因式分解的是( )A.6x9y33(2x3y)B.x21(x1)2C.(xy)2x22xyy2D.2x222(x1)(x1)4、下列各式中,能用完全平方公式分解因式的是(
2、)A.B.C.D. 5、下列等式中,从左往右的变形为因式分解的是()A.a2a1a(a1)B.(ab)(a+b)a2b2C.m2m1m(m1)1D.m(ab)+n(ba)(mn)(ab)6、下面的多项式中,能因式分解的是()A.2m2B.m2+n2C.m2nD.m2n+17、若是整数,则一定能被下列哪个数整除( )A.2B.3C.5D.78、下列因式分解正确的是()A.2p+2q+12(p+q)+1B.m24m+4(m2)2C.3p23q2(3p+3q)(pq)D.m41(m+1)(m1)9、下列四个式子从左到右的变形是因式分解的为()A.(xy)(xy)y2x2B.a2+2ab+b21(a+
3、b)21C.x481y4(x2+9y2)(x+3y)(x3y)D.(a2+2a)28(a2+2a)+12(a2+2a)(a2+2a8)+1210、下面从左到右的变形中,因式分解正确的是()A.2x24xy2x(x+2y)B.x2+9(x+3)2C.x22x1(x1)2D.(x+2)(x2)x2411、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)12、下列各式从左到右的变形,属于因式分解的是()A.ab+bc+bb(a+c)+bB.a29(a+3)(a3)C.(a1)2+(a1)a2aD.a(a1)a2a1
4、3、下列各式从左到右的变形属于因式分解的是( )A.B.C.D.14、下列等式从左到右的变形,属于因式分解的是()A.x2+2x1(x1)2B.(a+b)(ab)a2b2C.x2+4x+4(x+2)2D.ax2aa(x21)15、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2)C.4m2+n2(2m+n)(2mn)D.二、填空题(10小题,每小题4分,共计40分)1、利用平方差公式计算的结果为_2、分解因式:_3、已知,则的值等于_4、因式分解:_5、若,则a2bab2_6、分解因式_7、若,则的值是_8、若xy6,xy4,则x2yx
5、y2_9、分解因式:2x3+12x2y+18xy2_10、若多项式9x2+kxy+4y2能用完全平方公式进行因式分解,则k_三、解答题(3小题,每小题5分,共计15分)1、探究:如何把多项式x2+8x+15因式分解? (1)观察:上式能否可直接利用完全平方公式进行因式分解? 答:_; (2)(阅读与理解):由多项式乘法,我们知道(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左地使用,即可对形如x2+(a+b)x+ab的多项式进行因式分解,即:x2+(a+b)x+ab=(x+a)(x+b)此类多项式x2+(a+b)x+ab的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数
6、之和猜想并填空:x2+8x+15=x2+(_)+(_)x+(_)(_)=(x+_)(x+_)(3)上面多项式x2+8x+15的因式分解是否符合题意,我们需要验证请写出验证过程(4)请运用上述方法将下列多项式进行因式分解:x2-x-122、因式分解(1)(2)3、因式分解:m2(a+b)16(a+b)-参考答案-一、单选题1、D【分析】根据因式分解的定义及方法即可得出答案.【详解】A:根据因式分解的定义,每个因式要分解彻底,由3ab26ab3a(b22b)中因式b22b分解不彻底,故A不符合题意.B:将x(ab)y(ba)变形为x(ab)+y(ab),再提取公因式,得x(ab)y(ba)x(ab
7、)+y(ab)(ab)(x+y),故B不符合题意.C:形如a22ab+b2是完全平方式,a2+2ab4b2不是完全平方式,也没有公因式,不可进行因式分解,故C不符合题意.D:先将变形为,再运用公式法进行分解,得,故D符合题意.故答案选择D.【点睛】本题考查的是因式分解,注意因式分解的定义把一个多项式拆解成几个单项式乘积的形式.2、D【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.3、D【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.
8、【详解】解:A、6x+9y+3=3(2x+3y+1),故此选项错误;B、x2-1=(x+1)(x-1),故此选项错误;C、(x+y)2=x2+2xy+y2,是整式乘法运算,不是因式分解,故此选项错误;D、2x2-2=2(x-1)(x+1),属于因式分解,故此选项正确.故选:D.【点睛】本题考查的是因式分解的意义,正确掌握因式分解的定义是解题关键.4、D【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故
9、本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.5、D【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查
10、因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.6、A【分析】分别根据提公因式法因式分解以及乘法公式逐一判断即可.【详解】解:A、2m22(m1),故本选项符合题意;B、m2+n2,不能因式分解,故本选项不合题意;C、m2n,不能因式分解,故本选项不合题意;D、m2n+1,不能因式分解,故本选项不合题意;故选A.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.7、A【分析】根据题目中的式子,进行因式分解,根据a是整数,从而可以解答本题.【详解】解:a2+a=a(a+1),a是整数,a(a+1)一定是两个连续的整
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 浙教版 初中 数学 年级 下册 第四 因式分解 章节 练习 练习题
限制150内