《2022年人教版九年级数学下册第二十八章-锐角三角函数定向测试练习题.docx》由会员分享,可在线阅读,更多相关《2022年人教版九年级数学下册第二十八章-锐角三角函数定向测试练习题.docx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,C=90,ABC=30,D是AC的中点,则tanDBC的值是( )A B C D2、在
2、正方形网格中,ABC的位置如图所示,点A、B、C均在格点上,则cosB的值为()A B C D3、在RtABC中,C90,sinA,则cosB等于( )ABCD4、如图,ABC的顶点在正方形网格的格点上,则cosACB的值为( )ABCD5、在中,则的值是( )ABCD6、已知锐角满足tan(+10)=1, 则锐角用的度数为( )A20B35C45D507、如图,ABC中,ABAC2,B30,ABC绕点A逆时针旋转(0120)得到ABC,BC与BC、AC分别交于点D、点E,设CD+DEx,AEC的面积为y,则y与x的函数图象大致为()A BC D8、如图,AB是的直径,点C是上半圆的中点,点P
3、是下半圆上一点(不与点A,B重合),AD平分交PC于点D,则PD的最大值为( )A B C D9、请比较sin30、cos45、tan60的大小关系()Asin30cos45tan60Bcos45tan60sin30Ctan60sin30cos45Dsin30tan60cos4510、的相反数是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点A、B、C都在格点上,则CAB的正切值为_2、计算:sin30tan45_3、如图,矩形ABCD中,AB4,AEAD,将ABE沿BE折叠后得到GBE,延长BG交CD于F点,若F为CD中点,则BC的长为 _4、半
4、径为3cm的圆内有长为的弦,则此弦所对的圆周角的度数为_5、如图,在菱形ABCD中,DEAB,则tanDBE_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在x轴的负半轴上,点C在y轴的正半轴上,直线BC的解析式为ykx12(k0),ACBC,线段OA的长是方程x215x160的根请解答下列问题:(1)求点A、点B的坐标(2)若直线l经过点A与线段BC交于点D,且tanCAD,双曲线y(m0)的一个分支经过点D,求m的值(3)在第一象限内,直线CB下方是否存在点P,使以C、A、P为顶点的三角形与ABC相似若存在,请直接写出所有满足条件的点
5、P的坐标;若不存在,请说明理由2、某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥如图,河旁有一座小山,山高,点、与河岸、在同一水平线上,从山顶处测得河岸和对岸的俯角分别为,若在此处建桥,求河宽的长(结果精确到)参考数据:,3、如图,在ABC中,B30,AB4,ADBC于点D且tanCAD,求BC的长4、如图,AB是O的直径,弦CDAB与点E,点P在O上,1=C,(1)求证:CBPD;(2)若BC=6,sinP=,求O的直径5、计算:-参考答案-一、单选题1、D【分析】根据正切的定义以及,设,则,结合题意求得,进而即可求得【详解】解:在ABC中,C=90,ABC=30,
6、设,则, D是AC的中点,故选D【点睛】本题考查了正切的定义,特殊角的三角函数值,掌握正切的定义是解题的关键2、B【分析】如图所示,过点A作AD垂直BC的延长线于点D得出ABD为等腰直角三角形,再根据45角的余弦值即可得出答案【详解】解:如图所示,过点A作ADBC交BC延长线于点D,AD=BD=4,ADB=90,ABD为等腰直角三角形,B=45故选B【点睛】本题主要考查了求特殊角三角函数值,解题的关键在于根据根据题意构造直角三角形求解3、A【分析】由知道A=30,即可得到B的度数即可求得答案【详解】解:在RtABC中,C90,A=30,B=60,故选A【点睛】本题主要考查了特殊角的锐角三角函数
7、值,直角三角形两锐角互余,解题的关键是正确识记30角的正弦值和60度角的余弦值4、D【分析】根据图形得出AD的长,进而利用三角函数解答即可【详解】解:过A作ADBC于D,DC=1,AD=3,AC=,cosACB=,故选:D【点睛】本题主要考查了解直角三角形,解题的关键是掌握勾股定理逆定理及余弦函数的定义5、B【分析】根据题意,画出图形,结合余弦函数的定义即可求解【详解】解:由题意,可得图形如下:根据余弦函数的定义可得,故选:B【点睛】此题考查了余弦函数的定义,解题的关键是根据题意画出图形,并掌握余弦函数的定义6、B【分析】根据特殊角的三角函数值计算即可;【详解】tan(+10)=1,且,;故选
8、B【点睛】本题主要考查了特殊角的三角函数值,准确计算是解题的关键7、B【分析】先证ABFACE(ASA),再证BFDCED(AAS),得出DE+DC=DE+DB=BE=x,利用锐角三角函数求出,AG=ACsin30=1,根据三角形面积列出函数解析式是一次函数,即可得出结论【详解】解:设BC与AB交于F,ABC绕点A逆时针旋转(0120)得到ABC,BAF=CAE=,AB=AC=AB=AC,B=C=B=C=30,在ABF和ACE中,ABFACE(ASA),AF=AE,AB=AC,BF=AB-AF=AC-AE=CE,在BFD和CED中,BFDCED(AAS),BD=CD,FD=ED,DE+DC=D
9、E+DB=BE=x,过点A作AGBC于G,AB=AC,BG=CG,AC=2,cosC=,AG=ACsin30=1EC=是一次函数,当x=0时,故选择B【点睛】本题考查等腰三角形性质,图形旋转,三角形全等判定与性质,解直角三角形,三角形面积,列一次函数解析式,识别函数图像,本题综合性强,难度大,掌握以上知识是解题关键8、A【分析】根据点C是半圆的中点,得到AC= BC,直径所对的圆周角是90得到ACB=90,同弧所对圆周角相等得到APC=ABC=45,AD平分PAB得到 BAD = DAP,结合外角的性质可证CAD = CDA,由线段的和差解得PD=P-CD=P-1,由此可知当CP为直径时,PD
10、最大,最后根据三角函数可得答案【详解】解:点C是半圆的中点, AC= BCAB是直径ACB=90CAB = CBA= 45同弧所对圆周角相等APC=ABC=45AD平分PAB BAD = DAPCDA= DAP+ APC = 45+ DAPCAD= CAB+BAD = 45+ BADCAD = CDAAC=CD=1PD=P-CD=P-1当CP为直径时,PD最大RtABC中,ACB = 90,CAB = 45, CP的最大值是 PD的最大值是 -1,故选:A【点睛】本题考查了同弧所对圆周角相等、直径所对的圆周角是90、角平分线的性质、三角形外角的性质、三角函数的知识,做题的关键是熟练掌握相关的知
11、识点,灵活综合的运用9、A【分析】利用特殊角的三角函数值得到sin30,cos45,tan60,从而可以比较三个三角函数大小【详解】解答:解:sin30,cos45,tan60,而,sin30cos45tan60故选:A【点睛】本题主要考查了特殊角的三角函数值的应用,实数比大小,准确计算是解题的关键10、C【分析】先计算=,再求的相反数即可【详解】=,的相反数是,故选C【点睛】本题考查了特殊角的三角函数值,相反数的定义,熟记特殊角的三角函数值是解题的关键二、填空题1、#0.5【解析】【分析】过作垂直于的延长线于点,则为直角三角形,解直角三角形即可求解【详解】如图:过作垂直于的延长线于点,为直角
12、三角形在中故答案为:【点睛】本题考查的是解直角三角形,解题关键是结合网格的特点构造直角三角形,利用锐角三角形函数解答2、-#-0.5【解析】【分析】根据解特殊角的三角函数值即可解答【详解】解:sin30=,tan45=1,原式-1-故答案为:-【点睛】本题考查特殊角的三角函数值,有理数减法,解题的关键是牢记这些特殊三角函数值3、4【解析】【分析】延长BF交AD的延长线于点H,证明BCFHDF(AAS),由全等三角形的性质得出BC=DH,由折叠的性质得出A=BGE=90,AE=EG,设AE=EG=x,则AD=BC=DH=3x,得出EH=5x,由锐角三角函数的定义及勾股定理可得出答案【详解】解:延
13、长BF交AD的延长线于点H,四边形ABCD是矩形,AD=BC,ADBC,A=BCF=90,H=CBF,在BCF和HDF中,BCFHDF(AAS),BC=DH,将ABE沿BE折叠后得到GBE,A=BGE=90,AE=EG,EGH=90,AE=AD,设AE=EG=x,则AD=BC=DH=3x,ED=2x,EH=ED+DH=5x,在RtEGH中,sinH=,sinCBF=,AB=CD=4,F为CD中点,CF=2,BF=10,经检验,符合题意,BC=4,故答案为:4【点睛】本题考查了矩形的性质,折叠的性质,全等三角形的判定与性质,解直角三角形,勾股定理,熟练掌握折叠的性质是解题的关键4、60或120【
14、解析】【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出OCF的大小,进而求出BOC的大小,再由圆周角定理可求出D、E大小,进而得到弦BC所对的圆周角【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为D或E,如下图所示,作OFBC,由垂径定理可知,F为BC的中点,BC=,CF=BF=BC= =,又因为半径为3,OC=3,在RtFOC中,cosOCF= =3=,OCF=30,OC=OB,OCF=OBF=30,COB=120,D=COB=120=60,又圆内接四边形的对角互补,E=120,则弦BC所对的圆周角为60或
15、120故答案为:60或120【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键5、3【解析】【分析】根据DEAB,cosA,设AE4x,AD5x,根据勾股定理DE,根据四边形ABCD为菱形,可得菱形的边ABAD5x,可求BE=AB-AE=5x-4x=x,根据正切定义求tanDBE=即可【详解】解:DEAB,cosA,设AE4x,AD5x,在RtADE中, DE,四边形ABCD为菱形,菱形的边ABAD5x,BE=AB-AE=5x-4x=x,tanDBE=故答案为:3【点睛】本题考查了菱形的性质,解直角三角形,勾股定理,根据
16、根据菱形的四条边都相等求出菱形的边长是解题的关键,利用A的余弦设AE=4x,AD=5x使求解更加简便三、解答题1、(1)A(16,0),B(-9,0);(2)-24;(3)存在,(16,12)或(25,12)或(32,)或()【解析】【分析】(1)解一元二次方程x215x160,对称点A(16,0),根据直线BC的解析式为ykx12,求出与y轴交点C为(0,12),利用三角函数求出tanBCO= tanOAC=,求出OB=即可;(2)过点D作DEy轴于E,DFx轴于F,利用勾股定理求出AC=,BC=,根据三角函数求出tanCAD,求出,利用三角函数求出DE= CDsinBCO=,再利用勾股定理
17、求出点D(-3,8)即可;(3)过点A作AP1与过点C与x轴平行的直线交于P1,先证四边形COAP1为矩形,求出点P1(16,12),再证P1CACAB,作P2AAC交CP1延长线于P2,可得CAP2=BCA=90,P2CA=CAB,可证CAP2ACB,先求三角函数值cosCAO=,再利用三角函数值cosP2CA= cosCAO=,求出,得出点P2()作P3CA=OCA,在射线CP3截取CP3=CO=12,连结AP3,先证CP3ACOA(SAS)再证P3CACAB,设P3(x,y)利用勾股定理列方程,解方程得出点P3(),延长CP3与延长线交P4,过P4作PHx轴于H,先证CAP4ACB,再证
18、P4P3AP4HA(ASA),利用cosP3CA=,求得即可【详解】解:(1)x215x160,因式分解得,解得,点A在x轴的正半轴上,OA=16,点A(16,0),直线BC的解析式为ykx12,与y轴交点C为(0,12),tanOAC=,OCA+OAC=90,ACBC,BCO+OCA=90,BCO=OAC,tanBCO= tanOAC=,OB=,点B(-9,0);(2)过点D作DEy轴于E,DFx轴于F,在RtAOC中,AC=,在RtBOC中BC=,tanCAD,sinBCO=,DE= CDsinBCO=,CE=,OE=OC-EC=12-4=8,点D(-3,8),双曲线y(m0)的一个分支经
19、过点D,;(3)过点A作AP1与过点C与x轴平行的直线交于P1,则CP1A=P1CO=COA=90,四边形COAP1为矩形,点P1(16,12),当点P1(16,12)时,CP1OA,P1CA=CAB,ACB=CP1A,P1CACAB,作P2AAC交CP1延长线于P2,CAP2=BCA=90,P2CA=CAB,CAP2ACB,cosCAO=,cosP2CA= cosCAO=,点P2的横坐标绝对值=,纵坐标的绝对值=OC=12,点P2(),作P3CA=OCA,在射线CP3截取CP3=CO=12,连结AP3,在CP3A和COA中,CP3ACOA(SAS),AP3=OA=16,P3CACAB,设P3
20、(x,y),整理得,解得:,点P3(),延长CP3与延长线交P4,过P4作PHx轴于H,P4CA=CAB,P4AC=BAC=90,CAP4ACB,BAC+HAP4=CAP3+P3AP4=90,CAP3=BAC,HAP4=P3AP4,P4P3A=180-CP3A=180-90=90=P4HA,在P4P3A和P4HA中,P4P3AP4HA(ASA),AP3=AH=16,P3P4=P4H,cosP3CA=,OH=OA+AH=OA+AP3=16+16=32,点,综合直线CB下方,使以C、A、P为顶点的三角形与ABC相似点P的坐标(16,12)或()或或()【点睛】本题考查一元二次方程的解法,直线与y轴
21、的交点,反比例函数解析式,锐角三角形函数,勾股定理,三角形全等判定与性质,矩形判定与性质,三角形相似,图形与坐标,解方程组,本题难度大,综合性强,涉及知识多,利用动点作出准确图形是解题关键2、河宽的长约为【解析】【分析】根据等腰三角形的判定可得,在中,由三角函数的定义求出的长,根据线段的和差即可求出的长度【详解】解:在中,.在中,.答:河宽的长约为【点睛】此题主要考查了解直角三角形的应用-仰角俯角问题,正确记忆锐角三角函数关系是解题关键3、【解析】【分析】在中求出,在中,由求出,即可得出的长【详解】于点D,为直角三角形,在中,在中,【点睛】本题考查直角三角形的性质,勾股定理以及解直角三角形,掌握直角三角形中,角所对的边是斜边的一半是解题的关键4、(1)见解析;(2)10【解析】【分析】(1)根据题意有,推出,故可证;(2)连接AC构造直角三角形,则,即,所以可以求得圆的直径【详解】(1),;(2)如图,连接AC,AB为O的直径,即,O的直径为10【点睛】本题考查圆的性质以及锐角三角函数,掌握相关知识点的应用是解题的关键5、7【解析】【分析】根据,立方根的求法,特殊三角函数的值,积的乘方,计算即可得答案【详解】解: =1-2+6-(-2)=7【点睛】本题考查了二次根式、零指数幂、特殊三角函数的值、积的乘方的相关计算,做题的关键是掌握相关法则,特别积的乘方的逆运算,认真计算
限制150内