[中考专题]2022年北京市中考数学模拟真题-(B)卷(含答案解析).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《[中考专题]2022年北京市中考数学模拟真题-(B)卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《[中考专题]2022年北京市中考数学模拟真题-(B)卷(含答案解析).docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年北京市中考数学模拟真题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是()A等腰三角形高、中线、角平分线互相重合B顶角相
2、等的两个等腰三角形全等C底角相等的两个等腰三角形全等D等腰三角形的两个底角相等2、如图,已知ADBC,欲用“边角边”证明ABCCDA,需补充条件()AAB = CDBB = DCAD = CBDBAC = DCA3、下图中能体现1一定大于2的是()ABCD4、已知4个数:,其中正数的个数有( )A1B C3D45、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:;抛物线与轴的另一个交点的坐标为;方程有两个不相等的实数根其中正确的个数为( )A个B个C个D个6、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )A5或6B6或7C5或6或7D6或7
3、或87、某三棱柱的三种视图如图所示,已知俯视图中,下列结论中:主视图中;左视图矩形的面积为;俯视图的正切值为其中正确的个数为( ) 线 封 密 内 号学级年名姓 线 封 密 外 A个B个C个D个8、抛物线的顶点坐标是( )ABCD9、下列运动中,属于旋转运动的是( )A小明向北走了 4 米B一物体从高空坠下C电梯从 1 楼到 12 楼D小明在荡秋千10、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,按此规律,第7个图形中圆圈的个数为( )A21B25C28D29第卷(非选择题 70分)二、填空题(5小题,每小题4
4、分,共计20分)1、若矩形ABCD的对角线AC,BD相交于点,且,则矩形ABCD的面积为_2、已知射线,在射线上截取OC=10cm,在射线上截取CD=6cm,如果点、点分别是线段、的中点,那么线段的长等于_cm3、多项式x3-4x2y326的次数是_4、如图,在ABC中,AB12,BC15,D为BC上一点,且BDBC,在AB边上取一点E,使以B,D,E为顶点的三角形与ABC相似,则BE_5、如图,在平面直角坐标系中,二次函数 yx22xc 的图象与 x 轴交于 A、C 两点,与 y轴交于点 B(0,3),若 P 是 x 轴上一动点,点 D(0,1)在 y 轴上,连接 PD,则 C 点的坐标是_
5、,PDPC 的最小值是_三、解答题(5小题,每小题10分,共计50分)1、综合与实践如图1,在综合实践课上,老师让学生用两个等腰直角三角形进行图形的旋转探究在中,在中,点,分别在,边行,直角顶点重合在一起,将绕点逆时针旋转,设旋转角,其中(1)当点落在上时,如图2:请直接写出的度数为_(用含的式子表示);若,求的长;(2)如图3,连接,并延长交于点,请判断与的位置关系,并加以证 线 封 密 内 号学级年名姓 线 封 密 外 明;(3)如图4,当与是两个相等钝角时,其他条件不变,即在与中,则的度数为_(用含或的式子表示)2、已知:如图,在中,是边边上的高,是中线,是的中点,求证:3、一司机驾驶汽
6、车从甲地到乙地,他以60km/h的平均速度行驶4h到达目的地,并按照原路返回甲地(1)返回过程中,汽车行驶的平均速度v与行驶的时间t有怎样的函数关系?(2)如果要在3h返回甲地,求该司机返程的平均速度;(3)如图,是返程行驶的路程s(km)与时间t(h)之间的函数图象,中途休息了30分钟,休息后以平均速度为85km/h的速度回到甲地求该司机返程所用的总时间4、如图,已知AE平分BAC交BC于点E,AF平分CAD交BC的延长线于点F,B64,EAF58,试判断AD与BC是否平行解:AE平分BAC,AF平分CAD(已知),BAC21,CAD( )又EAF1+258,BADBAC+CAD2(1+2)
7、 线 封 密 内 号学级年名姓 线 封 密 外 (等式性质)又B64(已知),BAD+B( )5、如图,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2(1)求原正方形空地的边长;(2)在实际建造时,从校园美观和实用的角度考虑,按图的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度-参考答案-一、单选题1、D【分析】根据等腰三角形的性质和全等三角形的判定方法对选项一一分析判定即可【详解】解:A、等腰三角形底边上的高
8、、底边上的中线、顶角的角平分线互相重合,该选项说法错误,不符合题意;B、顶角相等的两个等腰三角形不一定全等,因为边不相等,该选项说法错误,不符合题意;C、底角相等的两个等腰三角形不一定全等,因为没有边对应相等,该选项说法错误,不符合题意;D、等腰三角形的两个底角相等,该选项说法正确,符合题意;故选:D【点睛】本题考查等腰三角形的性质与全等判定,掌握等腰三角形的性质与等腰三角形全等判定是解题关键2、C【分析】由平行线的性质可知,再由AC为公共边,即要想利用“边角边”证明ABCCDA,可添加AD=CB即可【详解】ADBC,AC为公共边,只需AD=CB,即可利用“边角边”证明ABCCDA故选:C【点
9、睛】本题考查平行线的性质,三角形全等的判定理解“边角边”即为两边及其夹角是解答本题的关键3、C【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:A、1和2是对顶角,12故此选项不符合题意;B、如图, 若两线平行,则32,则 若两线不平行,则大小关系不确定,所以1不一定大于2故此选项不符合题意;C、1是三角形的外角,所以12,故此选项符合题意;D、根据同角的余角相等,可得12,故此选项不符合题意故选:C【点睛】本题考查的是对顶角的性质,平行线的性质,
10、直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.4、C【分析】化简后根据正数的定义判断即可【详解】解:=1是正数,=2是正数,=1.5是正数,=-9是负数,故选C【点睛】本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键5、C【分析】根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断【详解】解:如图,开口向上,得,得,抛物线与轴交于负半轴,即,故错误;如图,抛物线与轴有两个交点,则;故正确;由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,故正确;如图
11、所示,当时,根的个数为与图象的交点个数,有两个交点,即有两个根, 线 封 密 内 号学级年名姓 线 封 密 外 故正确;综上所述,正确的结论有3个故选:C【点睛】主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用6、C【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到【详解】解:如图,原来多边形的边数可能是5,6,7故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况7、A【分析】过点A作AD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考专题 中考 专题 2022 北京市 数学模拟 答案 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内