2022年强化训练北师大版九年级数学下册第三章-圆重点解析试题(含答案解析).docx
《2022年强化训练北师大版九年级数学下册第三章-圆重点解析试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版九年级数学下册第三章-圆重点解析试题(含答案解析).docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第三章 圆重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在Rt中,以点为圆心,长为半径的圆交于点,则的长是( )A1BCD22、如图,有一个亭子,它的地基是边长为4m
2、的正六边形,则地基的面积为()A4m2B12m2C24m2D24m23、如图,在圆内接五边形中,则的度数为( )ABCD4、如图,已知AB是O的直径,CD是弦,若BCD36,则ABD等于()A54B56C64D665、如图,点A、B、C在O上,BAC56,则BOC的度数为( )A28B102C112D1286、如图,AB是O的直径,弦CDAB于E,若OA2,B60,则CD的长为( )AB2C2D47、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20B25C30D408、计算半径为1,圆心角为的扇形面积为( )ABCD9、如图,是正方形的外接圆,若的半径为4,则正方
3、形的边长为( )A4B8CD10、如图,在圆中半径OC弦AB,且弦ABCO2,则图中阴影部分面积为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在半径为的圆形纸片中,剪一个圆心角为90的最大扇形(阴影部分),则这个扇形的面积为_2、如图,PM,PN分别与O相切于A,B两点,C为O上异于A,B的一点,连接AC,BC若P58,则ACB的大小是_3、16.如图,平行四边形ABCD中,ACB = 30,AC的垂直平分线分别交AC,BC,AD于点O,E,F,点P在OF上,连接AE,PA,PB.若PA = PB,现有以下结论:PAB为等边三角形;PEBAPF;
4、PBC - PAC = 30;EA = EB + EP其中一定正确的是_(写出所有正确结论的序号) 4、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,则图中阴影部分的面积为_5、如图,AB为的直径,弦CDAB于点H,若AB=10,CD=8,则OH的长为_ 三、解答题(5小题,每小题10分,共计50分)1、在一块大铁皮上裁剪如图所示圆锥形的烟囱帽,它的底面直径为80cm,母线为50cm,求裁剪的面积2、抛物线的顶点的纵坐标为 (1)求,应满足的数量关系;(2)若抛物线上任意不同两点,都满足:当的时,;当时,直线与抛物线交于、两点,且为等腰直角三角形求抛物线的解析式若直线恒过定点,
5、且以为直径的圆与直线总有公共点,求的取值范围3、已知:A,B是直线l上的两点求作:ABC,使得点C在直线l上方,且AC=BC,作法:分别以A,B为圆心,AB长为半径画弧,在直线l上方交于点O,在直线l下方交于点E;以点O为圆心,OA长为半径画圆;作直线OE与直线l上方的O交于点C;连接AC,BCABC就是所求作的三角形(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接OA,OBOAOBAB,OAB是等边三角形A,B,C在O上,ACBAOB( )(填推理的依据)由作图可知直线OE是线段AB的垂直平分线,AC=BC( )(填推理的依据)ABC就是所求作的三角形4、
6、如图,O是四边形ABCD的外接圆,AD为O的直径连结BD,若(1)求证:12(2)当AD4,BC4时,求ABD的面积5、如图,在ABC中,AB30(1)尺规作图:在线段AB上找一点O,以O为圆心作圆,使O经过B,C两点(2)求证:AC与(1)中所做的O相切-参考答案-一、单选题1、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CEAB于E,利用,求出BE,根据垂径定理求出BD即可得到答案【详解】解: 在Rt中,BC=3,连接CD,过点C作CEAB于E, 解得,CB=CD,CEAB,故选:B【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键2
7、、D【分析】先根据等边三角形的性质求出OBC的面积,然后由地基的面积是OBC的6倍即可得到答案【详解】解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OPBC于P,由题意得:BC=4cm,六边形ABCD是正六边形,BOC=3606=60,又OB=OC,OBC是等边三角形,故选D【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键3、B【分析】先利用多边的内角和得到,可计算出,然后根据圆内接四边形的性质求出的度数即可.【详解】解:五边形的内角和为,四边形为的内接四边形,.故选:B.【点睛】本题主要考查了多边形的内角和与圆内接四边形的
8、性质,掌握圆内接四边形的性质是解答本题的关键.4、A【分析】根据圆周角定理得到ADB90,ABCD36,然后利用互余计算ABD的度数【详解】AB是O的直径,ADB90,DABBCD36,ABDADBDAB,即ABD90DAB903654故选:A【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径5、C【分析】直接由圆周角定理求解即可【详解】解:A56,A与BOC所对的弧相同,BOC2A112,故选:C【点睛】此题考查了圆周角定理,熟练掌握圆周角定理是解答本题的关键,同圆或等圆中,同弧
9、或等弧所对的圆周角等于这条弧所对的圆心角的一半6、B【分析】先证明是等边三角形,再证明求解从而可得答案.【详解】解: 是等边三角形, 故选B【点睛】本题考查的是等边三角形的判定与性质,垂径定理的应用,锐角三角函数的应用,证明是等边三角形是解本题的关键.7、B【分析】连接OA,如图,根据切线的性质得PAO=90,再利用互余计算出AOP=50,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90,P=40,AOP=50,OA=OB,B=OAB,AOP=B+OAB,B=AOP=50=25故选:B【点睛】本题考查了切线的性质:圆的切线垂
10、直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系8、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键9、D【分析】连接OB,OC,过点O作OEBC于点E,由等腰直角三角形的性质可知OE=BE,由垂径定理可知BC=2BE,故可得出结论【详解】解:连接OB,OC,过点O作OEBC于点E,OB=OC,BOC=90,OBE=45, OE=BE,OE2+BE2=OB2,BC=2BE=,即正方形ABCD的边长是故选:D【点睛】本题考查的是圆周角定理、垂径定理及勾股定理,根据题意作出辅助线,构造出等腰直角三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 强化 训练 北师大 九年级 数学 下册 第三 重点 解析 试题 答案
限制150内