2022年精品解析沪科版九年级数学下册期末定向攻克-卷(Ⅱ)(精选).docx
《2022年精品解析沪科版九年级数学下册期末定向攻克-卷(Ⅱ)(精选).docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪科版九年级数学下册期末定向攻克-卷(Ⅱ)(精选).docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版九年级数学下册期末定向攻克 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列汽车标志中既是轴对称图形又是中心对称图形的是( )ABCD2、在
2、中,给出条件:;外接圆半径为4请在给出的3个条件中选取一个,使得BC的长唯一可以选取的是( )ABCD或3、下列图形中,既是中心对称图形也是轴对称图形的是( )ABCD4、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是( )A0.560B0.580C0.600D0.6205、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )A60B90C12
3、0D1806、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定7、如图,AB是的直径,弦CD交AB于点P,则CD的长为( )ABCD88、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是( ) 线 封 密 内 号学级年名姓 线 封 密 外 AB1C2D9、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为( )A12B15C18D2310、如图,
4、在中,将绕点C逆时针旋转90得到,则的度数为( )A105B120C135D150第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系内,OA0A190,A1OA060,以OA1为直角边向外作RtOA1A2,使A2A1O90,A2OA160,按此方法进行下去,得到 RtOA2A3,RtOA3A4,若点A0的坐标是(1,0),则点A2021的横坐标是_2、一个不透明的袋子中放有3个红球和5个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率为 _3、如图,已知O的半径为2,弦AB的长度为2,点C是O上一动点若ABC为等腰三角形,则BC2为
5、_4、小明和小强玩“石头、剪刀、布”游戏,按照“石头胜剪刀,剪刀胜布,布胜石头,相同算平局”的规则,两人随机出手一次,平局的概率为_5、两直角边分别为6、8,那么的内接圆的半径为_三、解答题(5小题,每小题10分,共计50分)1、一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4随机摸取一个小球后,不放回,再随机摸出一个小球,分别求下列事件的概率:(1)两次取出的小球标号和为奇数;(2)两次取出的小球标号和为偶数2、在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表实验种 线 封 密 内 号学级年名姓 线 封 密 外 植数(粒)155010020050
6、0100020003000发芽频数04459218847695119002850(1)估计该麦种的发芽概率(2)如果播种该种小麦每公顷所需麦苗数为4000000棵,种子发芽后的成秧率为80%,该麦种的千粒质量为50g那么播种3公顷该种小麦,估计约需麦种多少千克(精确到1kg)?3、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F(1)如图,当点P在线段AB上运动时,若DBE30,PB2,求DE的长;(2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出
7、证明4、在ABC与DEF中,BACEDF90,且ABAC,DEDF(1)如图1,若点D与A重合,AC与EF交于P,且CAE30,CE,求EP的长;(2)如图2,若点D与C重合,EF与BC交于点M,且BMCM,连接AE,且CAEMCE,求证:AE+MFCE;(3)如图3,若点D与A重合,连接BE,且ABEABC,连接BF,CE,当BF+CE最小时,直接出的值5、如图,已知AB是的直径,点D为弦BC中点,过点C作切线,交OD延长线于点E,连结BE,OC(1)求证:(2)求证:BE是的切线-参考答案-一、单选题1、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、是轴对称图形,不是中心
8、对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合2、B【分析】画出图形,作,交BE于点D根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判
9、断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意【详解】如图,点C在射线上作,交BE于点D,为等腰直角三角形,不存在的三角形ABC,故不符合题意;,AC=8,而AC6,存在的唯一三角形ABC,如图,点C即是,使得BC的长唯一成立,故符合题意;,存在两个点C使的外接圆的半径等于4,两个外接圆圆心分别在AB的上、下两侧,如图,点和即为使的外接圆的半径等于4的点故不符合题意故选B【点睛】本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质利用数形结合的思想是解答本题的关键3、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】 线
10、 封 密 内 号学级年名姓 线 封 密 外 解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意故选:A【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合4、C【分析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐
11、稳定到常数0.600附近,这名球员在罚球线上投篮一次,投中的概率为0.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.5、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120故选C【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键6、C【分析】根据O的半径r=4,且点A到圆心O的距离d=5知
12、dr,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,dr,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr7、A【分析】过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长【详解】解:如图,过点作于点,连接, 线 封 密 内 号学级年名姓 线 封 密 外 AB是的直径,在中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键
13、8、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60
14、=30,CG=AB=5=2.5,MG=CG=, 线 封 密 内 号学级年名姓 线 封 密 外 HN=,故选A【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点9、A【分析】由题意可设盒子中红球的个数x,则盒子中球的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可【详解】解:设盒子中红球的个数x,根据题意,得: 解得x=12,所以盒子中红球的个数是12,故选:A【点睛】本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 精品 解析 沪科版 九年级 数学 下册 期末 定向 攻克 精选
限制150内