2022年必考点解析沪教版七年级数学第二学期第十四章三角形专题练习练习题(无超纲).docx
《2022年必考点解析沪教版七年级数学第二学期第十四章三角形专题练习练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析沪教版七年级数学第二学期第十四章三角形专题练习练习题(无超纲).docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪教版七年级数学第二学期第十四章三角形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形他的依据是( )A
2、BCD2、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D63、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,则( )A45B60C35D404、下列各组线段中,能构成三角形的是( )A2、4、7B4、5、9C5、8、10D1、3、65、BDE和FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内若BC5,则五边形DECHF的周长为()A8B10C11D126、如图,点F,C在BE上,ACDF,BFEC,ABDE,AC与DF相交于点G,则与2DFE相等的是()AA+DB3BC180FGCDACE+B7、如图,等边中,D为AC
3、中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C10D128、如图,已知RtABC中,C90,A30,在直线BC上取一点P,使得PAB是等腰三角形,则符合条件的点P有( )A1个B2个C3个D4个9、如图,A,DBC3DBA,DCB3DCA,则BDC的大小为( )ABCD10、一个三角形三个内角的度数分别是x,y,z若,则这个三角形是( )A等腰三角形B等边三角形C等腰直角三角形D不存在第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点D是的平分线OC上一点,过点D作交射线OA于点E,则线段DE与OE的数量关系为:DE_OE(
4、填“”或“”或“”)2、如图,在正方形网格中,BAC_DAE(填“”、“”或“”)3、如图,PAPB,请你添加一个适当的条件:_,使得PADPBC4、如图,的平分线交于点,是上的一点,的平分线交于点,且,下列结论:平分;与互余的角有个;若,则其中正确的是_(请把正确结论的序号都填上)5、如图,在ABC中,ACB=90,AC=BC,BECE于点E,ADCE于点D若AD=3cm,BE=1cm,则DE=_三、解答题(10小题,每小题5分,共计50分)1、如图,已知点B,F,C,E在同一直线上,ABDE,BFCE,ABED,求证:AD2、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、C
5、D上的点,AEGAGE,CDGC(1)求证:AB/CD;(2)若AGE+AHF=180,求证:B=C;(3)在(2)的条件下,若BFC=4C,求D的度数3、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一如图1所示的“三等分角仪”是利用阿基米德原理做出的这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OAOCPCAOB为要三等分的任意角则利用“三等分角仪”可以得到APB AOB我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明已知:如图2,点O,C分别在APB的边PB,PA上,且
6、OAOCPC求证:APB AOB4、如图,已知ABAC,ADAE,BD和CE相交于点O求证:OBOC5、在等边中,D、E是BC边上两动点(不与B,C重合)(1)如图1,求的度数;(2)点D在点E的左侧,且AD=AE,点E关于直线AC的对称点为F,连接AF,DF依题意将图2补全;求证:6、阅读填空,将三角尺(MPN,MPN=90)放置在ABC上(点P在ABC内),如图所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究ABP与ACP是否存在某种数量关系(1)特例探索:若A=50,则PBC+PCB= 度,ABP+ACP= 度(2)类比探索:ABP、ACP、A的关系是 (3)变式探索:如图所示
7、,改变三角尺的位置,使点P在ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则ABP、ACP、A的关系是 7、如图,ABC中,ABAC,D为BC边的中点,AFAD,垂足为A求证:128、如图所示,四边形ABCD中,ADC的角平分线DE与BCD的角平分线CA相交于E点,已知:ACB32,CDE58(1)求DEC的度数;(2)试说明直线9、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC(1)求证DOBAOC;(2)求CEB的大小;(3)如图2,OAB固定不动,保持OCD的形状和大小不变,将OCD绕点
8、O旋转(OAB和OCD不能重叠),求CEB的大小10、如图,在ABC中,ABAC,M,N分别是AB,AC边上的点,并且MNBC(1)AMN是否是等腰三角形?说明理由;(2)点P是MN上的一点,并且BP平分ABC,CP平分ACB求证:BPM是等腰三角形;若ABC的周长为a,BCb(a2b),求AMN的周长(用含a,b的式子表示)-参考答案-一、单选题1、C【分析】根据题意,可知仍可辨认的有1条边和2个角,且边为两角的夹边,即可根据来画一个完全一样的三角形【详解】根据题意可得,已知一边和两个角仍保留,且边为两角的夹边,根据两个三角形对应的两角及其夹边相等,两个三角形全等,即故选C【点睛】本题考查了
9、三角形全等的性质与判定,掌握三角形的判定方法是解题的关键2、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键3、A【分析】由折叠得到B=BCD,根据三角形的内角和得A+B+ACB=180,代入度数计算即可【详解】解:由折叠得B=BCD,A+B+ACB=180,65+2B+25=180,B=45,故选:A【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键4、C【分析】根据三角形的三边关系定理逐项
10、判断即可得【详解】解:三角形的三边关系定理:任意两边之和大于第三边A、,不能构成三角形,此项不符题意;B、,不能构成三角形,此项不符题意;C、,能构成三角形,此项符合题意;D、,不能构成三角形,此项不符题意;故选:C【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键5、B【分析】证明AFHCHG(AAS),得出AF=CH由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案【详解】解:GFH为等边三角形,FH=GH,FHG=60,AHF+GHC=120,ABC为等边三角形,AB=BC=AC=5,ACB=A=60,AHF=180-FHG-GHC
11、=120-GHC,HGC=180-C-GHC =120-GHC,AHF=HGC,在AFH和CHG中,AFHCHG(AAS),AF=CHBDE和FGH是两个全等的等边三角形,BE=FH,五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC=10故选:B【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键6、C【详解】由题意根据等式的性质得出BCEF,进而利用SSS证明ABC与DEF全等,利用全等三角形的性质得出ACBDFE,最后利用三角形内角和进行分析解答【分析】解
12、:BFEC,BF+FCEC+FC,BCEF,在ABC与DEF中,ABCDEF(SSS),ACBDFE,2DFE180FGC,故选:C【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法)7、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型8、
13、B【分析】根据等腰三角形的判定定理,结合图形即可得到结论【详解】解:以点A、B为圆心,AB长为半径画弧,交直线BC于两个点,然后作AB的垂直平分线交直线BC于点,如图所示:C90,A30,是等边三角形,点重合,符合条件的点P有2个;故选B【点睛】本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键9、A【分析】根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解【详解】解:A,DBC3DBA,DCB3DCA,设,即故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键10、C【分析】根据绝对值及平方的非
14、负性可得,再由三角形内角和定理将两个式子代入求解可得,即可确定三角形的形状【详解】解:,且,解得:,三角形为等腰直角三角形,故选:C【点睛】题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键二、填空题1、【分析】首先由平行线的性质求得EDO=DOB,然后根据角平分线的定义求得EOD=DOB,最后根据等腰三角形的判定和性质即可判断【详解】解:EDOB,EDO=DOB,D是AOB平分线OC上一点,EOD=DOB,EOD=EDO,DE=OE,故答案为:=【点睛】本题主要考查的是平行线的性质、角平分线的定义以及等角对等边,根据平行线的性质和角平分线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 必考 解析 沪教版 七年 级数 第二 学期 第十四 三角形 专题 练习 练习题 无超纲
限制150内