《模拟真题2022年邯郸永年区中考数学第三次模拟试题(含答案详解).docx》由会员分享,可在线阅读,更多相关《模拟真题2022年邯郸永年区中考数学第三次模拟试题(含答案详解).docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年邯郸永年区中考数学第三次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、当n为自然数时,(n1)2(n3)2一定能被下列哪个数整除()A5
2、B6C7D82、使分式有意义的x的取值范围是( )ABCD3、下列说法中正确的个数是( )两点之间的所有连线中,线段最短;相等的角是对顶角;过一点有且仅有一条直线与己知直线平行;两点之间的距离是两点间的线段;若,则点为线段的中点;不相交的两条直线叫做平行线。A个B个C个D个4、如果单项式2a2m5bn+2与ab3n2的和是单项式,那么m和n的取值分别为()A2,3B3,2C3,2D3,25、若是最小的自然数, 是最小的正整数,是绝对值最小的有理数,则的值为( ) A-1B1C0D26、下列计算: 0(5)=0+(5)=5; 534=512=7; 43()=4(1)=4; 122(1)2=1+2
3、=3其中错误的有()A1个B2个C3个D4个7、在,中,最大的是( )ABCD8、如图,正方形的边长,分别以点,为圆心,长为半径画弧,两弧交于点,则的长是( )ABCD9、是-2的( ) A相反数B绝对值C倒数D以上都不对10、若a0,则=( ) AaB-aC- D0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在高米,坡角为的楼梯表面铺地毯,地毯的长度至少需要_米(精确到米) 线 封 密 内 号学级年名姓 线 封 密 外 2、已知圆锥的底面周长为,母线长为则它的侧面展开图的圆心角为_度3、如图,在中,F是边上的中点,则_1(填“”“=”或“”)4、已知的平方根
4、是,则m=_.5、如图,在ABC中,BC=3cm,BAC=60,那么ABC能被半径至少为 cm的圆形纸片所覆盖三、解答题(5小题,每小题10分,共计50分)1、当x为何值时,和互为相反数2、如图,在平面直角坐标系中,抛物线与直线交于,两点,其中,(1)求该抛物线的函数表达式;(2)点,为直线下方抛物线上任意两点,且满足点的横坐标为,点的横坐标为,过点和点分别作轴的平行线交直线于点和点,连接,求四边形面积的最大值;(3)在(2)的条件下,将抛物线沿射线平移个单位,得到新的抛物线,点为点的对应点,点为的对称轴上任意一点,点为平面直角坐标系内一点,当点,构成以为边的菱形时,直接写出所有符合条件的点的
5、坐标,并任选其中一个点的坐标,写出求解过程3、在平面直角坐标系中二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点 线 封 密 内 号学级年名姓 线 封 密 外 (1)求A、B两点的坐标;(2)已知点D在二次函数的图象上,且点D和点C到x轴的距离相等,求点D的坐标4、某公司生产A型活动板房成本是每个425元图表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4米,宽AB=3米,抛物线的最高点E到BC的距离为4米(1)按如图所示的直角坐标系,抛物线可以用表示直接写出抛物线的函数表达式 (2)现将A型活动板房改造为B型活动板房如图,在抛物线与AD之间的区域内加装一
6、扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户每平方米的成本为50元已知GM=2米,直接写出:每个B型活动板房的成本是 元(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场信息,这样的B型活动板房公司每月最多能生产个,若以单价元销售B型活动板房,每月能售出个;若单价每降低元,每月能多售出个这样的B型活动板房不考虑其他因素,公司将销售单价(元)定为多少时,每月销售B型活动板房所获利润(元)最大?最大利润是多少?5、王叔叔在某商场销售一种商品,他以每件40元的价格购进这种商品,在销售过程中发现这种商品每天的销售量y(件)与每件的销售单价x(元
7、)满足一次函数关系:(1)若设利润为w元,请求出w与x的函数关系式(2)若每天的销售量不少于44件,则销售单价定为多少元时,此时利润最大,最大利润是多少?-参考答案-一、单选题1、D【分析】用平方差公式进行分解因式可得【详解】(n+1)2(n3)2=(n+1+n3)(n+1n+3)=8(n1),且n为自然数,(n+1)2(n3)2能被8整除故选D【点睛】本题考查了因式分解的应用,关键是能用平方差公式熟练分解因式2、B【分析】根据分式有意义的条件,即分母不为零求出x的取值范围即可【详解】解:由题意得:, 线 封 密 内 号学级年名姓 线 封 密 外 解得,故选:B【点睛】本题主要考查了分式有意义
8、的条件,熟知分式有意义,即分母不为零是解题的关键3、D【分析】本题属于基础应用题,只需学生熟练掌握平面图形的基本概念,即可完成.【详解】两点之间的所有连线中,线段最短,正确;相等的角不一定是对顶角,但对顶角相等,故本小题错误;过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;两点之间线段的长度,叫做这两点之间的距离,故本小题错误;若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误;在同一平面内,不相交的两条直线叫做平行线,故本小题错误;所以,正确的结论有,共1个故选D【点睛】熟练掌握平面图形的基本概念4、B【分析】根据题意可知单项式2a2m5bn+2与a
9、b3n2是同类项,结合同类项的定义中相同字母的指数也相同的条件,可得方程组,解方程组即可求得m,n的值【详解】解:根据题意,得解得m3,n2故选:B【点睛】同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项5、C【分析】由a是最小的自然数,b是最小的正整数,c是绝对值最小的数可分别求出a、b、c的值,可求出a-bc的值【详解】解:因为a是最小的自然数,b是最小的正整数,c是绝对值最小的有理数,所以a=0,b=1,c=0,所以a-bc=0-10=0,故选:C【点睛】本题考查有理数的有关概念,注意:最小的自然数是0;最小的正整数是1,绝对值最小的有理数是06、C【分析】根据有理数
10、的减法法则可判断;先算乘法、再算减法,可判断;根据有理数的乘除运算法则可判断;根据有理数的混合运算法则可判断,进而可得答案. 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:,所以运算错误;,所以运算正确;43()=4()=,所以运算错误;122(1)2=121=3,所以运算错误综上,运算错误的共有3个,故选:C.【点睛】本题考查了有理数的混合运算,属于基本题型,熟练掌握有理数的混合运算法则是解题关键.7、B【分析】根据绝对值及乘方进行计算比较即可【详解】,中,最大的是故选:B【点睛】本题考查了有理数的乘方和绝对值,熟练掌握运算法则是解题的关键8、A【分析】根据条件可以得到ABE是等
11、边三角形,可求EBC=30,然后利用弧长公式即可求解【详解】解:连接,是等边三角形,的长为故选A【点睛】本题考查了正方形性质,弧长的计算公式,正确得到ABE是等边三角形是关键. 如果扇形的圆心角是n,扇形的半径是R,则扇形的弧长l的计算公式为:9、D【分析】根据相反数、绝对值、倒数的定义进行解答即可【详解】解:,-2的相反数是2,-2的绝对值是2,-2的倒数是-,所以以上答案都不对.故选D【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查相反数、绝对值、倒数,掌握相反数、绝对值、倒数的定义是解题的关键10、B【分析】根据负数的绝对值等于它的相反数,即可解答【详解】解:a0,|a|
12、=-a故选:B 【点睛】本题考查绝对值,解题的关键是熟记负数的绝对值等于它的相反数二、填空题1、【分析】首先利用锐角三角函数关系得出AC的长,再利用平移的性质得出地毯的长度【详解】由题意可得:tan27=0.51,解得:AC3.9,故AC+BC=3.9+2=5.9(m),即地毯的长度至少需要5.9米故答案为5.9【点睛】本题主要考查了解直角三角形的应用,得出AC的长是解题的关键2、【分析】根据弧长=圆锥底面周长=4,弧长=计算【详解】由题意知:弧长=圆锥底面周长=4cm,=4,解得:n=240故答案为240【点睛】本题考查了的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系3、【分析】连接AE
13、,先证明得出,根据三角形三边关系可得结果【详解】如图,连接,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 ,在中,F是边上的中点,故答案为:【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键4、7【分析】分析题意,此题运用平方根的概念即可求解.【详解】因为2m+2的平方根是4,所以2m+2=16,解得:m=7.故答案为:7.【点睛】本题考查平方根.5、【分析】作圆的直径,连接,根据圆周角定理求出,根据锐角三角函数的定义得出,代入求出即可【详解】解:作圆O的直径CD,连接BD,圆周角A、D所对弧都是,D=A=60CD是直径,DBC=90
14、sinD=又BC=3cm,sin60=,解得:CD=的半径是(cm)ABC能被半径至少为cm的圆形纸片所覆盖【点睛】本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是利用外接圆直径构造直角三角形求半径.三、解答题1、【分析】 线 封 密 内 号学级年名姓 线 封 密 外 由相反数的定义得到与的和为零,据此解一元一次方程即可解题【详解】解:解得即当时,和互为相反数【点睛】本题考查相反数、解一元一次方程等知识,是基础考点,掌握相关知识是解题关键2、(1)抛物线表达式为;(2)当时,S四边形PQDC最大=;(3)所有符合条件的点的坐标()或()或()或()【分析】(1)利用
15、待定系数法求抛物线解析式抛物线过,两点,代入坐标得:,解方程组即可;(2)根据点的横坐标为,点的横坐标为,得出,解不等式组得出,用m表示点P,点Q,用待定系数法求出AB解析式为,用m表示点C,点D,利用两点距离公式求出PC=,QD=,利用梯形面积公式求出S四边形PQDC=即可;(3)根据勾股定理求出AB=,将抛物线配方,根据平移,得出抛物线向右平移4个单位,再向下平移2个单位, 求出新抛物线,根据, 求出点P,与对应点E,平移后新抛物线对称轴为,设点G坐标为,点F()分两类四种种情况,四边形BEFG为菱形,BE=EF,根据勾股定理,求出点F(),(),当点F()时,点G、F、E、B坐标满足,得
16、出 G(),点F()时,点G3、F、E、B坐标满足, ,得出G3(),四边形BEFG为菱形,BE=BF,根据勾股定理,点F(),(),点F()时,点G1、F、E、B坐标满足, ,得出 G1(),点F()时,点G2、F、E、B坐标满足,得出G2()【详解】解:(1)抛物线过,两点,代入坐标得:,解得:,抛物线表达式为; 线 封 密 内 号学级年名姓 线 封 密 外 (2)点,为直线下方抛物线上任意两点,且满足点的横坐标为,点的横坐标为,解得,点P,点Q设AB解析式为,代入坐标得:,解得:,AB解析式为,点C,点DPC=,QD=S四边形PQDC=,当时,S四边形PQDC最大=;(3)AB=,抛物线
17、向右平移4个单位,再向下平移2个单位, ,点P,对应点E,平移后新抛物线对称轴为,设点G坐标为,点F(),分两类四种种情况,四边形BEFG为菱形,BE=EF,根据勾股定理,或,点F(),(), 线 封 密 内 号学级年名姓 线 封 密 外 当点F()时,点G、F、E、B坐标满足:,解得,解得,G();点F()时,点G3、F、E、B坐标满足:,解得,解得,G3();四边形BEFG为菱形,BE=BF,根据勾股定理,或,点F(),(),点F()时,点G1、F、E、B坐标满足:,解得,解得,G1();点F()时,点G2、F、E、B坐标满足:,解得,解得,G2(),综合所有符合条件的点的坐标()或()或
18、()或() 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查待定系数法求抛物线解析式与直线解析式,两点距离,梯形面积,二次函数顶点式最值,抛物线平移,菱形性质,图形与坐标,本题难度大,解题复杂,计算要求非常准确,考查学生多方面能力,知识掌握情况,阅读,分类,数形结合,运算,画图是中考难题3、(1)A(1,0),B(5,0)(2)(6,5)【分析】(1)先将点C的坐标代入解析式,求得a;然后令y=0,求得x的值即可确定A、B的坐标;(2)由可知该抛物线的顶点坐标为(3,-4),又点D和点C到x轴的距离相等,则点D在x轴的上方,设D的坐标为(d,5),然后代入解析式求出d即可(1)解
19、:二次函数的图象与y轴交于,解得a=1二次函数的解析式为二次函数的图象与x轴交于A、B两点令y=0,即,解得x=1或x=5点A在点B的左侧A(1,0),B(5,0)(2)解:由(1)得函数解析式为抛物线的顶点为(3,-4)点D和点C到x轴的距离相等,即为5点D在x轴的上方,设D的坐标为(d,5),解得d=6或d=0点D的坐标为(6,5)【点睛】本题主要考查了二次函数与坐标轴的交点、二次函数抛物线的顶点、点到坐标轴的距离等知识点,灵活运用相关知识成为解答本题的关键4、(1)(2)500(3)公司将销售单价n定为620元时,每月销售B型活动板房所获利润w最大,最大利润是19200元【分析】(1)根
20、据题意,待定系数法求解析式即可;(2)根据(1)的结论写出的坐标,进而求得,根据矩形的面积公式计算,进而求得每个B型活动板房的成本;(3)根据利润等于单个利润乘以销售量,进而根据二次函数的性质求得最值即可(1)长方形的长,宽,抛物线的最高点到的距离为, 线 封 密 内 号学级年名姓 线 封 密 外 由题意知抛物线的函数表达式为,把点代入,得,该抛物线的函数表达式为故答案为:(2),当时,每个B型活动板房的成本是(元)故答案为:500(3)根据题意,得, 每月最多能生产个B型活动板房,解得, ,时,随的增大而减小,当时,有最大值,且最大值为 答:公司将销售单价定为元时,每月销售B型活动板房所获利
21、润最大,最大利润是元【点睛】本题考查了二次函数的应用,二次函数的性质,掌握二次函数的性质是解题的关键5、(1)w2x2+220x5600(x40)(2)销售单价定为48元时,利润最大,最大利润是352元【分析】(1)根据利润=销售数量每件的利润可得wy(x40),把y2x+140代入整理即可得w与x的函数关系式;(2)由每天的销售量不少于44件,可得y2x+140 44,进而可求出x48;由于(1)已求w2x2+220x5600,整理可得w2(x55)2+450,有二次函数的性质a=-20可知,当x55时,w随x的增大而增大,所以当x48时,w有最大值,最大值为:2482+220485600352(1)解:由题意得:wy(x40)(2x+140)(x40)2x2+220x5600, 线 封 密 内 号学级年名姓 线 封 密 外 w与x的函数关系式为w2x2+220x5600(x40);(2)解:y44,2x+14044,解得:x48;w2x2+220x56002(x55)2+450,a=-20,当x55时,w随x的增大而增大, x48,当x48时,w有最大值,最大值为:2482+220485600352 销售单价定为48元时,利润最大,最大利润是352元【点睛】本题主要考查了二次函数的应用及二次函数求最值问题的知识,根据题意列出w与x的函数关系式是解题的关键
限制150内