《人教版八年级数学下册第十九章-一次函数同步训练试卷(精选).docx》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第十九章-一次函数同步训练试卷(精选).docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十九章-一次函数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在同一平面直角坐标系中,一次函数ykxb与正比例函数yx(k,b是常数,且kb0)的图象可能是( )ABCD2
2、、已知两个一次函数y1ax+b与y2bx+a,它们在同一平面直角坐标系中的图象可能是下列选项中的()ABCD3、下列各图中,不能表示y是x的函数的是( )ABCD4、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()Ay=2x+3By=x3Cy=x+3Dy=3x5、下列函数中,自变量的取值范围选取错误的是( )Ay=2x2中,x取全体实数By=中,x取x-1的实数Cy=中,x取x2的实数Dy=中,x取x-3的实数6、已知点A(2,4)沿水平方向向左平移3个单位长度得到点A,若点A在直线yx+b上,则b的值为()A1B3C5D17、甲、乙两名
3、同学在一段2000m长的笔直公路上进行自行车比赛,开始时甲在起点,乙在甲的前方200m处,他们同时同向出发匀速前进,甲的速度是8m/s,乙的速度是6m/s,先到达终点者在终点处等待设甲、乙两人之间的距离是y(m),比赛时间是x(s),整个过程中y与x之间的函数关系的图象大致是()ABCD8、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )ABCD9、已知一次函数yaxb(a0)的图象经过点(0,1)和(1,3),则ba的值为( )A1B0C1D210、小亮从家步行到公交车站台,等公交车去学校图中的折线表示小亮的行程s(km)与所花
4、时间t(min)之间的关系则小亮步行的速度和乘公交车的速度分别是( )A100 m/min,266m/minB62.5m/min,500m/minC62.5m/min,437.5m/minD100m/min,500m/min第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么在,中是变量的是_2、点P(2,4)在正比例函数ykx(k是常数,且k0)的图象上,则k_3、已知函数f(x)+x,则f()_4、若一次函数(是常数,)的图像经过点(1,3)和点(1,2),则k
5、=_,b=_5、已知函数y,那么自变量x的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、如图,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B(0,6),与正比例函数y=3x的图象交于点C(1,m)(1)求一次函数y=kx+b的解析式;(2)比较SOCA和SOCB的大小;(3)点N为正比例函数图象上的点(不与C重合),过点N作NEx轴于点E(n,0),交直线y=kx+b于点D,当NDAB时,求点N的坐标2、在平面直角坐标系xOy中,一次函数ykxb(k0)的图象可由函数yx的图象平移得到,且经过点(2,0)(1)求一次函数ykxb的表达式;(2)将一次函数ykxb在x轴下
6、方的图象沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象(如图所示)根据图象,当x2时,y随x的增大而 ;请再写出两条该函数图象的性质3、某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?4、利用函数图象解方程组3x+2y=-12x-y=-35、某公司销售A、B两种型号教学设备,每台的销售成本和售价如表:型号AB成本(万元/台)35售价(万元/台)48已知每月销售两种型号设备共20台,设销售A种型号
7、设备x台,A、B两种型号设备全部售完后获得毛利润y万元(毛利润售价-成本)(1)求y关于x的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A、B两种型号设备,售完后毛利润最大?并求出最大毛利润-参考答案-一、单选题1、C【解析】【分析】根据一次函数的图象与系数的关系,由一次函数ykx+b图象分析可得k、b的符号,进而可得的符号,从而判断的图象是否正确,进而比较可得答案【详解】解:根据一次函数的图象分析可得:A、由一次函数ykx+b图象可知k0,b0,则0;正比例函数的图象可知0,矛盾,故此选项不符合题意;B、由一次函数ykx+b图象
8、可知k0,b0;即0,与正比例函数的图象可知0,矛盾,故此选项不符合题意;C、由一次函数ykx+b图象可知k0,b0;即0,与正比例函数的图象可知0,故此选项符合题意;D、由一次函数ykx+b图象可知k0,b0;即0,与正比例函数的图象可知0,矛盾,故此选项不符合题意;故选C【点睛】此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:当k0,b0,函数y=kx+b的图象经过第一、二、三象限;当k0,b0,函数y=kx+b的图象经过第一、三、四象限;当k0,b0时,函数y=kx+b的图象经过第一、二、四象限;当k0,b0时,函数y=kx+b的图象经过第二、三、四象2、B【解析
9、】【分析】先由一次函数y1ax+b图象得到字母系数的符号,再与一次函数y2bx+a的图象相比较看是否一致【详解】解:A、一次函数y1ax+b的图象经过一二四象限,a0,b0;由一次函数y2bx+a图象可知,b0,a0,两结论矛盾,故错误;B、一次函数y1ax+b的图象经过一三四象限,a0,b0;由y2的图象可知,a0,b0,两结论不矛盾,故正确;C、一次函数y1ax+b的图象经过一二四象限,a0,b0;由y2的图象可知,a0,b0,两结论矛盾,故错误;D、一次函数y1ax+b的图象经过一二四象限,a0,b0;由y2的图象可知,a0,b0,两结论相矛盾,故错误故选:B【点睛】本题主要考查了一次函
10、数图象与系数的关系,一次函数的图象有四种情况:当k0,b0时,函数经过一、二、三象限;当k0,b0时,函数经过一、三、四象限;当k0时,函数经过一、二、四象限;当k0,by2时;当y1=y2时;当y1y2时,学校选择乙商场购买更优惠,即4500x+15004800x,解得x5,即1x5;当y1=y2时,学校选择甲、乙两商场购买一样优惠,即4500x+1500=4800x,解得x=5;当y1y2时,学校选择甲商场购买更优惠,即4500x+15005当购买数量少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买数量多于5台电脑时,学校选择甲商场购买更
11、优惠【点睛】题目主要考查一次函数应用中的方案选择,理解题意,列出相应函数解析式,求解不等式是解题关键4、x=-1y=1【解析】【分析】直接利用两函数图象的交点横纵坐标即为x,y的值进而得出答案【详解】解:方程组对应的两个一次函数为:y=-32x-12与y=2x+3,画出这两条直线,如图所示:由图像知两直线交点坐标为(-1,1)所以原方程组的解为x=-1y=1【点睛】此题主要考查了一次函数与二元一次方程组的解,正确利用数形结合分析是解题关键5、(1)y=-2x+60;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元【解析】【分析】(1)设销售A种品牌设备x台,B种品牌设备(20-x)台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案【详解】解:(1)设销售A种型号设备x台,则销售B种型号设备(20-x)台,依题意得:y=(4-3)x+(8-5)(20-x),即y=-2x+60;(2)3x+5(20-x)80,解得x10-20,当x=10时,y最大=40万元故公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注意题目蕴含的数量关系,正确列式解决问题
限制150内