人教版九年级数学下册第二十八章-锐角三角函数专项测评试卷(名师精选).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《人教版九年级数学下册第二十八章-锐角三角函数专项测评试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《人教版九年级数学下册第二十八章-锐角三角函数专项测评试卷(名师精选).docx(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、球沿坡角的斜坡向上滚动了5米,此时钢球距地面的高度是( )A米B米C米D米2、如图,小王在高台上的点A处
2、测得塔底点C的俯角为,塔顶点D的仰角为,已知塔的水平距离ABa,则此时塔高CD的长为()Aasin+asin Batan+atan CD3、如图,建筑工地划出了三角形安全区,一人从点出发,沿北偏东53方向走50m到达C点,另一人从B点出发沿北偏西53方向走100m到达C点,则点A与点B相距( )ABCD130m4、如图,某建筑物AB在一个坡度为i1:0.75的山坡BC上,建筑物底部点B到山脚点C的距离BC20米,在距山脚点C右侧同一水平面上的点D处测得建筑物顶部点A的仰角是42,在另一坡度为i1:2.4的山坡DE上的点E处测得建筑物顶部点A的仰角是24,点E到山脚点D的距离DE26米,若建筑物
3、AB和山坡BC、DE的剖面在同一平面内,则建筑物AB的高度约为()(参考数据:sin240.41,cos240.91,tan240.45,sin420.67cos420.74,tan420.90)A36.7米 B26.3 米 C15.4米 D25.6 米5、下列叙述正确的有()圆内接四边形对角相等;圆的切线垂直于圆的半径;正多边形中心角的度数等于这个正多边形一个外角的度数;过圆外一点所画的圆的两条切线长相等;边长为6的正三角形,其边心距为2A1个B2个C3个D4个6、在中,则的值是( )ABCD7、如图,在RtABC中,C90,BC1,以下正确的是( )ABCD8、如图,在正方形中、是的中点,
4、是上的一点,则下列结论:(1);(2);(3);(4)其中结论正确的个数有( )A1个B2个C3个D4个9、计算的值等于( )AB1C3D10、如图,过点O、A(1,0)、B(0,)作M,D为M上不同于点O、A的点,则ODA的度数为()A60B60或120C30D30或150第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD中,AB4,AEAD,将ABE沿BE折叠后得到GBE,延长BG交CD于F点,若F为CD中点,则BC的长为 _2、正八边形的半径为6,则正八边形的面积为_3、某人沿着坡度为 12.4 的斜坡向上前进了 130m,那么他的高度上升了_m4
5、、计算:_5、如图,在正方形中,对角线,相交于点O,点E在边上,且,连接交于点G,过点D作,连接并延长,交于点P,过点O作分别交、于点N、H,交的延长线于点Q,现给出下列结论:;其中正确的结论有_(填入正确的序号)三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在x轴的负半轴上,点C在y轴的正半轴上,直线BC的解析式为ykx12(k0),ACBC,线段OA的长是方程x215x160的根请解答下列问题:(1)求点A、点B的坐标(2)若直线l经过点A与线段BC交于点D,且tanCAD,双曲线y(m0)的一个分支经过点D,求m的值(3)在第一象限
6、内,直线CB下方是否存在点P,使以C、A、P为顶点的三角形与ABC相似若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由2、如图,平行四边形ABCD中,对角线AC平分BAD,与BD交O一点,直线EF过点O分别交直线AB,CD,BC于E,F,H(1)求证:BOEDOF;(2)若OC2HCBC,OC:BH3,求sinBAC;(3)在AOF中,若AF8,AOOF4,求平行四边形ABCD的面积3、如图, 在 中, 点 分别在 边和 边上,沿着直线 翻折 ,点 落在 边上,记为点 ,如果 ,则 _4、5、如图,在平面直角坐标系xOy中,正方形ABCD的边AB在x轴的正半轴上,顶点C,D在第
7、一象限内,正比例函数y13x的图象经过点D,反比例函数的图象经过点D,且与边BC交于点E,连接OE,已知AB3(1)点D的坐标是 ;(2)求tanEOB的值;(3)观察图象,请直接写出满足y23的x的取值范围;(4)连接DE,在x轴上取一点P,使,过点P作PQ垂直x轴,交双曲线于点Q,请直接写出线段PQ的长-参考答案-一、单选题1、A【分析】过铅球C作CB底面AB于B,在RtABC中,AC=5米,根据锐角三角函数sin31=,即可求解【详解】解:过铅球C作CB底面AB于B,如图在RtABC中,AC=5米,则sin31=,BC=sin31AC=5sin31故选择A【点睛】本题考查锐角三角函数,掌
8、握锐角三角函数的定义是解题关键2、B【分析】根据直角三角形锐角三角函数即可求解【详解】解:在中,在中,故选:B【点睛】本题考查了解直角三角形的应用仰角俯角问题,解题的关键是掌握直角三角形锐角三角函数3、B【分析】设经过A点的东西方向线与经过B点的南北方向线相交于点D,过C作CFAD,CEAD,BEAG,则GACACFEBCBCF53,在RtACF和RtBCE中,根据正切三角函数的定义得到,结合勾股定理可求得AF40,CFDE30,FDCE80,BE60,在RtABD中,根据勾股定理即可求得AB【详解】解:如图,设经过A点的东西方向线与经过B点的南北方向线相交于点D,过C作CFAD,CEAD,B
9、EAG,CEB90,GACACFEBCBCF53,AC50,BC100,四边形CEDF是矩形,DECF,DFCE,在RtACF中,tanACFtan53,在RtBCE中,tanEBCtan53,tan53,AFCF,CEBE,在RtACF中,AF2+CF2AC2,CF2+(CF)2502,解得CFDE30,AF3040,在RtBCE中,BE2+CE2BC2,BE2+(BE)21002,解得BE60,CEDF6080,ADAF+DF120,BDBEDE30,在RtABD中,AD2+BD2AB2,AB30故选:B【点睛】本题考查的是解直角三角形的应用方向角问题,正确标注方向角、熟记锐角三角函数的定
10、义是解题的关键4、D【分析】如图所示,过E点做CD平行线交AB线段为点H,标AB线段和CD线段相交点为G和H由坡度为i1:0.75,BC20可得BG=16,GC=12,由坡度为 i1:2.4,DE26可得DF=24,EF=10,分别在在中满足,在中满足化简联立得AB=25.6【详解】如图所示,过E点做CD平行线交AB线段为点H,标AB线段和CD线段相交点为G和H在中BC20,坡度为i1:0.75,在中DE26,坡度为 i1:2.4,在中满足,在中满足,即,其中BG=16、BG=12、BH=BG-EF=6、DF=24,代入化简得,令2-有,AB=25.6故选:D【点睛】本题考查了解直角三角形的应
11、用,利用三角形的坡度和斜边长通过勾股定理可以求得三角形各边长度,再根据角度列含两个未知数的二元一次方程组,正确的列方程求解是解题的关键5、B【分析】利用圆内接四边形的性质可判断;根据圆的切线性质可判断;根据正多边形性质可判断;根据正三角形边长为6,连接OB、OC;先求出中心角BOC,根据等腰三角形性质,求出BOD12060,利用锐角三角函数可求OD6即可【详解】解:圆内接四边形对角互补但不一定相等,故不符合题意;圆的切线垂直于过切点的半径,故不符合题意;正n多边形中心角的度数等于,这个正多边形的外角和为360,一个外角的度数等于正确,故符合题意;过圆外一点所画的圆的两条切线长相等,正确,故符合
12、题意;如图,ABC为正三角形,点O为其中心;ODBC于点D;连接OB、OC;OBOC,BOC360120,BDBC3,BOD12060,tanBOD,OD6,即边长为6的正三角形的边心距为,故不符合题意,故选:B【点睛】本题考查圆内接四边形性质,圆的切线性质,切线长性质,正多边形的中心角与外角,锐角三角函数,边心距,掌握圆内接四边形性质,圆的切线性质,切线长性质,正多边形的中心角与外角,锐角三角函数,边心距是解题关键6、B【分析】根据题意,画出图形,结合余弦函数的定义即可求解【详解】解:由题意,可得图形如下:根据余弦函数的定义可得,故选:B【点睛】此题考查了余弦函数的定义,解题的关键是根据题意
13、画出图形,并掌握余弦函数的定义7、C【分析】根据勾股定理求出AB,三角函数的定义求相应锐角三角函数值即可判断【详解】解:在RtABC中,C90,BC1,根据勾股定理AB=,cosA=,选项A不正确;sinA,选项B不正确;tanA,选项C正确;cosB,选项D不正确故选:C【点睛】本题主要考查锐角三角函数的定义,勾股定理,掌握锐角三角函数定义是解题的关键8、B【分析】首先根据正方形的性质与同角的余角相等证得:BAECEF,则可证得正确,错误,利用有两边对应成比例且夹角相等三角形相似即可证得ABEAEF,即可求得答案【详解】解:四边形ABCD是正方形,BC90,ABBCCD,AEEF,AEFB9
14、0,BAEAEB90,AEBFEC90,BAECEF,BAECEF,BECE,BE2ABCFAB2CE,CFCECD,CD=4CF,故正确,错误,tanBAEBE:AB,BAE30,故错误;设CFa,则BECE2a,ABCDAD4a,DF3a,AE2a,EFa,AF5a,ABEAEF90,ABEAEF,故正确故选:B【点睛】此题考查了相似三角形的判定与性质,直角三角形的性质以及正方形的性质熟练掌握相似三角形的判定与性质是解题的关键9、C【分析】直接利用特殊角的三角函数值代入求出答案【详解】解:故选C【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题的关键10、D【分析】连接,先利
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 下册 第二 十八 锐角三角 函数 专项 测评 试卷 名师 精选
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内