《人教版九年级数学下册第二十七章-相似专项攻克试题.docx》由会员分享,可在线阅读,更多相关《人教版九年级数学下册第二十七章-相似专项攻克试题.docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十七章-相似专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在边长为2的正方形ABCD中,已知BE1,将ABE沿AE折叠,点G与点B对应,连结BG并延长交CD于点F,
2、则GF的长为()ABCD2、如图,D是边AB上一点,过点D作交AC于点E若,则的值( )A2:3B4:9C2:5D4:253、如图,在ABC中,AC=3,BC=6,D为BC边上的一点,且BAC=ADC若ADC的面积为a,则ABC的面积为()ABCD4、如图,是的重心,过的一条直线分别与AB、AC相交于G、H(均不与的顶点重合),分别表示四边形和的面积,则的最大值是( )AB1CD5、如图,在RtABC中,C90,AB10,BC8点P是边AC上一动点,过点P作PQAB交BC于点Q,D为线段PQ的中点,当BD平分ABC时,AP的长度为( )ABCD6、下列图形中,ABC与DEF不一定相似的是( )
3、ABCD7、如图,在中,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )AB2C3D48、如图,以点O为位似中心,将ABC缩小后得到ABC,已知BB2OB,则ABC与ABC的面积之比()A1:3B1:4C1:5D1:99、如图,在平面直角坐标系中,将以原点O为位似中心放大后得到,若,则与的面积的比是( )ABCD10、如图的两个四边形相似,则a的度数是( )A120B87C75D60第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若线段c是线段a,b的比例中项,且,则_2、如图,在RtABC中,C90,AC9,BC4,以点C为圆心,3为半径做C,分别交
4、AC,BC于D,E两点,点P是C上一个动点,则PA+PB的最小值为 _3、如图,将矩形沿对折,点落在处,点落在边上的处,与相交于点,若,则周长的大小为_4、在平面直角坐标系中,ABC与DEF位似,位似中心是原点O已知A与D是对应顶点且A,D的坐标分别是A(9,18),D(3,6),若DEF的周长为3,则ABC的周长为 _5、若,则_三、解答题(5小题,每小题10分,共计50分)1、如图,RtABC,C90,AC12cm,BC5cm点P从点C出发,以2cm/s的速度沿CA向点A匀速运动,同时点Q从点B出发,以1cm/s的速度沿BC向点C匀速运动,当一个点到达终点时,另一个点随之停止(1)求经过几
5、秒,PCQ的面积等于ABC面积的?(2)求经过几秒,PCQ与ABC相似?2、如图,点是一次函数与反比例函数()的图象的一个交点,点是一次函数与轴的交点(1)求反比例函数表达式;(2)点是轴正半轴上的一个动点,设,过点作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,交一次函数的图象于点当时,求ABC的面积;当a为何值时,ACF与EQF相似3、如图,一次函数的图象与轴交于点,与轴交于点,与反比例函数的图象交于B,D两点,且AC=BC(1)求反比例函数的解析式;(2)已知是轴正半轴上一点,作轴交直线于点,交双曲线于点,当,为顶点的
6、四边形为平行四边形时,请写出点的坐标4、例2如图,在ABC中,D、E分别是边BC、AB的中点,AD、CE相交于点G,求证:证明:连结ED请根据教材提示,结合图,写出完整的证明过程【结论应用】如图,在ABC中,D、F分别是边BC、AB的中点,AD、CF相交于点G,GEAC交BC于点E,则DE:BC 5、如图,在平面直角坐标系中,的顶点坐标分别为,(1)请以原点为位似中心,画出,使它与的相似比为,变换后点、的对应点分别为点、,点在第一象限,并写出点坐标_;(2)若为线段上的任一点,则变换后点的对应点的坐标为_-参考答案-一、单选题1、B【解析】【分析】如图所示:设BF与AE相交于M,先证明EBMB
7、AE,即可利用ASA证明RtABERtBCF得到CFBE1,从而求出,然后证明EBMFBC,得到 ,即 ,求出 ,即可得到BG2BM,即可得到FGBFBG3 【详解】解:如图所示:设BF与AE相交于M,四边形ABCD是正方形,ABBC,ABCBCD90,ABE沿AE折叠得到AGE,AE是线段BG的垂直平分线,EMB90,EBM+BEM90,BAE+BEM90,EBMBAE,在RtABE和RtBCF中,RtABERtBCF(ASA),CFBE1,又EBMFBC,BMEBCF,EBMFBC,即,BG2BM,FGBFBG3,故选B【点睛】本题主要考查了正方形的性质,折叠的性质,全等三角形的性质与判定
8、,相似三角形的性质与判定,勾股定理等等,熟练掌握相似三角形的性质与判定条件是解题的关键2、D【解析】【分析】由题意易得,然后根据相似三角形的性质可求解【详解】解:DEBC,;故选D【点睛】本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键3、A【解析】【分析】证得ABCDAC后由面积比为相似比的平方即可求得ABC的面积【详解】BAC=ADC,C=CABCDAC又AC=3,BC=6AC:BC=1:2ABCDAC相似比为2:1则ABCDAC面积比为4:1DAC的面积为aABC的面积为4a故选:A【点睛】本题考查了相似三角形判断及性质,相似三角形的对应边成比例,对应角相等
9、,相似三角形的对应高的比,对应中线的比,对应角平分线的比都等于相似比,相似三角形的周长比等于相似比,相似三角形的面积比等于相似比的平方4、A【解析】【分析】根据是的重心可得,过O作MNBC交AN于N,交AC于M,过M作MEAB交GH于E,易证OM=ON,设,分别表示出四边形和的面积即可【详解】过O作MNBC交AN于N,交AC于M,过M作MEAB交GH于E是的重心,D是BC中点BD=CD,MNBC,MEAB设x为定值当y越小时值越大当时最大,此时GHBC故选:A【点睛】题是几何综合题,以三角形的重心为背景,考查了重心的概念、性质以及应用,考查了相似三角形的性质知识点解题的关键是表示出5、B【解析
10、】【分析】根据勾股定理求出AC,根据平行线的性质、角平分线的定义得到QDBQ,证明CPQCAB,根据相似三角形的性质计算即可【详解】解:设BQx,在RtABC中,C90,AB10,BC8,由勾股定理得,BD平分ABC,QBDABD,PQAB,QDBABD,QBDQDB,可设QDBQx,则CQ=8-x,D为线段PQ的中点,QP2QD2x,PQAB,CPQCAB,即解得:,APCACP,故选B【点睛】本题主要考查了角平分线的定义,平行线的性质,等腰三角形的性质与判定,相似三角形的性质与判定,勾股定理,熟练掌握相似三角形的性质与判定条件是解题的关键6、A【解析】【分析】根据相似三角形的判定定理进行解
11、答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得到:ACB=90,所以根据ACB=CDB=90,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理7、B【解析】【分析】由折叠的特点可知,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可
12、得求解即可【详解】解:沿折叠,使点落在点处,又,又为的中点,AE=AE,即,故选:B【点睛】本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键8、D【解析】【分析】直接根据题意得出位似比,根据位似比等于相似比,进而根据面积比等于相似比的平方求得面积比【详解】解答:解:以点O为位似中心,将ABC缩小后得到ABC,BB2OB,OBOB,ABC与ABC的面积之比为:1:9故选:D【点睛】此题主要考查了位似图形的性质,正确得出位似比是解题关键9、D【解析】【分析】根据图形可知位似比为,根据相似比等于位似比,面积比等于相似比的平方,即可求得答案【详解】解:,则与的
13、位似比为,与的相似比为则与的面积比为故选D【点睛】本题考查了位似图形的性质,求得位似比是解题的关键10、B【解析】【分析】根据相似多边形的性质,可得 ,再根据四边形的内角和等于360,即可求解【详解】解:如图,两个四边形相似, ,两个四边形相似,且四边形的内角和等于360, 故选:B【点睛】本题主要考查了相似多边形的性质,多边形的内角和,熟练掌握相似多边形的对应边成比例,对应角相等是解题的关键二、填空题1、6【解析】【分析】根据比例中项的定义可得c2=ab,从而易求c【详解】解:线段c是线段a,b的比例中项,c2=ab,a=4,b=9,c2=36,c=6(负数舍去),故答案是:6【点睛】本题考
14、查了比例线段,解题的关键是理解比例中项的含义2、【解析】【分析】在CD上截取CG=1,连接PG、CP、BG,证CPGCAP,可得AP=3PG,当G、P、B三点共线时,PA+PB值最小,求出GB长即可【详解】解:在CD上截取CG=1,连接PG、CP、BG,AC9,PC3,ACP=PCG,CPGCAP,PA+PBPG+PB,当G、P、B三点共线时,PA+PB值最小,此时点P与点H重合,最小值为BG长,BC4,C90,故答案为:【点睛】本题考查了圆的性质和相似三角形的判定与性质,解题关键是利用相似三角形的判定与性质,得出GP=PA3、8【解析】【分析】设,则,通过勾股定理即可求出值,再根据同角的余角
15、互补可得出,从而得出,根据相似三角形的周长比等于对应比即可求出结论【详解】解:设AH=a,则DH=AD-AH=8-a,在RtAEH中,EAH=90,AE=4,AH=a,EH=DH=8-a,EH2=AE2+AH2,即(8-a)2=42+a2,解得:a=3BFE+BEF=90,BEF+AEH=90,BFE=AEH又EAH=FBE=90,EBFHAE,CHAE=AE+EH+AH=AE+AD=12,CEBF=CHAE=8故答案为:8【点睛】本题考查了翻折变换、矩形的性质、勾股定理以及相似三角形的判定及性质,解题的关键是找出EBFHAE4、9【解析】【分析】直接利用对应点坐标得出位似比,进而得出周长比,
16、即可得出答案【详解】解:A,D的坐标分别是A(9,18),D(3,6),ABC与DEF的相似比为:3:1,ABC与DEF的周长比为:3:1,DEF的周长为3,ABC的周长为:9故答案为:9【点睛】本题主要考查位似三角形的性质,掌握位似比等于相似比是解题的关键5、【解析】【分析】直接利用已知将原式变形进而得出x,y之间的关系进而得出答案【详解】解:,2x+2y=3x,故2y=x,则,故答案为:【点睛】此题主要考查了比例的性质,正确将原式变形是解题关键三、解答题1、(1)经过2秒或3秒后,PCQ的面积等于面积的;(2)经过3011秒或2529秒,PCQ与相似【解析】【分析】(1)设经过t秒后,PC
17、Q的面积等于面积的,用表示、CQ的长,再根据三角形的面积列式计算即可;(2)分两种情况分别计算,设经过秒后PCQACB,推ACBC=PCCQ,设经过秒后PCQBCA,得BCAC=PCCQ,代入用t表示的线段计算即可【详解】解:(1)设经过t秒后,PCQ的面积等于面积的,则,PC=2t,BQ=t,CQ=5-t,122t(5-t)=1215125,整理得t2-5t+6=0,解得t1=2,t2=3,0t5,经过2秒或3秒后,PCQ的面积等于面积的(2)设经过秒后PCQACB,ACBC=PCCQ,125=2x5-x,解得x=3011,设经过秒后PCQBCA,BCAC=PCCQ,512=2x5-x,解得
18、x=2529;经过3011秒或2529秒,PCQ与相似【点睛】本题主要考查了相似三角形的判定、一元二次方程应用,解题的关键是熟练掌握一元二次方程解法及相似三角形的判定方法,分情况讨论也是解题关键2、(1)y=6x;(2)3.5;(3)当a3或a-1+733【解析】【分析】(1)由一次函数解析式可得点M的坐标为(3,2),然后把点M的坐标代入反比例函数解析式,求得k的值,可得反比例函数表达式;(2)作CDAB交AB于点D当a4时,利用函数解析式可分别求出点A、B、C、D的坐标,于是可得AB和CD的长度,即可求得ABC的面积;分ACF为直角,FAC为直角两种情况,利用数形结合即可求解【详解】解:(
19、1)把M(3,m)代入yx+1,则m2将(3,2)代入y=kx,得k6,则反比例函数解析式是:y=6x;(2)作CDAB交AB于点D当a4时,A(4,5),B(4,1.5),则AB3.5点Q为OP的中点,Q(2,0),C(2,3),则D(4,3),CD2,SABCABCD=123.523.5;点E,F在yx+1上点E(-1,0) F(a2,a2+1)Q(a2,0)EQ=QF EQF为等腰直角三角形,当ACF与EQF相似时,则ACF为等腰直角三角形,i、当ACF为直角时,则点C和点A的纵坐标相同,APCQ=12a,又A在直线yx+1上,12a=a+1,解得a3或a4(舍去),当a的值为3时,AC
20、F与EQF相似ii、当FAC为直角时,过A作ANCQ如图由题意得A(a,a+1),C(a2,12a)ACF为等腰直角三角形N(a2,a+1)ANCQAN=CNa2=12a-a-1解得:a-2+2736=-1+733 或a-2-2736=-1-733(舍去)当a3或a-1+733时,ACF与EQF相似【点睛】本题综合考查了待定系数法求函数解析式,函数图象上点的坐标特征以及相似的性质难度较大,解题时需要注意数形结合3、(1)反比例函数的解析式为y=;(2)P点坐标为(2,0)或(-2+2,0)【解析】【分析】(1)首先求出一次函数与坐标轴的交点,进而利用相似三角形的判定与性质得出B点坐标,进而求出
21、反比例函数解析式;(2)利用平行四边形的性质,进而表示出MN的长,再解方程得出a的值,即可得出P点坐标【详解】解:(1)如图1,过点B作BEx轴于点E,一次函数y=x+1的图象与x轴交于点A,与y轴交于点C,当x=0时,y=1;当y=0时,x=-2,故A(-2,0),C(0,1),COx轴于点O,BEx轴于点E,COBE,AOCAEB,AC=BC,AO=OE=2,即B点横坐标为:2,则y=2+1=2,B(2,2),把B点代入y=(k0),解得:xy=4,反比例函数的解析式为y=;(2)如图,由题意可得:COMN,只有CO=MN时,O,C,M,N为顶点的四边形为平行四边形,点P在x轴正半轴上,分
22、两种情况:当P点在B点右侧时,设P(a,0),(a0)则N(a,),M(a,a+1),故MN=a+1-=CO=1,解得:a=2,经检验,a=2是分式方程的解,但a=-20舍去;当P点在B点左侧时,设P(a,0),则N(a,),M(a,a+1),故MN=-(a+1)=CO=1,解得:a=-2+2或a=-2-2,经检验,a=-2+2或a=-2-2都是分式方程的解,但a= -2-20舍去;综上所述,P点坐标为(2,0)或(-2+2,0)【点睛】本题是反比例函数的综合题,主要考查了反比例函数性质、相似三角形的判定与性质以及分式方程和解一元二次方程,正确表示MN的长是解题关键4、(1)见解析;(2)1:
23、6【解析】【分析】(1)连接ED,根据三角形中位线定理得到EDAC,DEAC,证明DEGACG,根据三角形相似的性质证明结论;(2)先证明DGEDAC,得到DE=13DC,由D是AD的中点,可推出DE=16BC,由此即可得到答案【详解】解:(1)如图,连接ED,D,E分别是边BC,AB的中点,DE是ABC的中位线,EDAC,DEAC,DEGACG,EGCG=DGAG=EDAC=12,(2)GEAC,DGEDAC,DEDC=DGAD=13,DE=13DC,D是AD的中点,BC=2DC,DE=16BC,DE:BC=1:6,故答案为:1:6【点睛】本题主要考查了三角形中位线定理,相似三角形的性质与判定,解题的关键在于能够熟练掌握相似三角形的性质与判定条件5、a-2b+3c=6-18+36=【点睛】本题考查了比例关系,解方程及求代数式的值,由比例关系设a=2k,则b=3k,c=4k是关键24(1)图见解析,;(2)【解析】【分析】(1)根据相似比可确定三点的坐标,从而可画出并写出点坐标;(2)根据相似比即可确定点的坐标【详解】(1)如图所示:ABC即为所求,;故答案为:(2)若P(a,b)为线段BC上的任一点,则变换后点P的对应点P的坐标为:故答案为:【点睛】本题考查了在坐标系中作位似图形,求位似图形对应的坐标,关键是掌握位似图形的含义
限制150内