《中考专题特训浙教版初中数学七年级下册第五章分式章节测评试题(无超纲).docx》由会员分享,可在线阅读,更多相关《中考专题特训浙教版初中数学七年级下册第五章分式章节测评试题(无超纲).docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第五章分式章节测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、若 ,则 ( )ABCD2、计算(1)023正确的是()ABC6D73、某种细胞的直径是0.0005mm,这个细胞的直径是( )AmmBmmCmmDmm4、若a0.52,b52,c(5)0,那么a、b、c三数的大小为()AacbBcabCabcDcba5、新冠病毒由蛋白质外壳和单链核酸组成,直径大约在60140纳米(1纳米0.0000001厘米)某冠状病毒的直径约0.0000135厘米数据“0.0000135
2、”用科学记数法表示为()A1.35106B13.5106C1.35105D0.1351046、若,则可用含和的式子表示为( )ABCD7、在2020年3月底新过师炎疫情在我国得到快速控制,教育部要求低风险区错时、错峰开学,某校在只有初三年级开学时,一段时间用掉120瓶消毒液,在初二、初一年级也错时、错峰开学后,平均每天比原来多用4瓶消毒液,这样120瓶消毒液比原来少用5天,若设原来平均每天用掉x瓶消毒液,则可列方程是()ABCD8、下列分式中,把x,y的值同时扩大2倍后,值不变的是()ABCD9、设甲、乙、丙为三个连续的正偶数,已知甲的倒数与丙的倒数的2倍之和等于乙的倒数的3倍,设乙为x,所列
3、方程正确的是( )ABCD10、据成都新闻报道,某种病毒的半径约为5纳米,1纳米109米,则该病毒半径用科学记数法表示为()A5106米B5107米C5108米D5109米二、填空题(5小题,每小题4分,共计20分)1、当x_时,分式的值为02、若单项式与是同类项,则_3、已知,则的取值范围是_4、已知,用,表示的式子为_5、一种物质的质量为00000000236千克,用科学记数法表示为_千克三、解答题(5小题,每小题10分,共计50分)1、解下列方程(组): (1);(2)22、先化简,再求值:,其中x1.3、计算:(1)(2)4、计算:(1)()2+(3.14)0(2)(a1)2a(a+2
4、)5、计算:(1)(2)-参考答案-一、单选题1、B【分析】先利用的值,求出,再利用负整数指数幂的运算法则,得到的值【详解】解:,或(舍去),故选:B【点睛】本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键2、B【分析】根据负指数幂运算法则a-p=(a0,p为正整数),零指数幂运算法则:a0=1(a0)进行计算即可得出答案【详解】解:原式=故选:B【点睛】本题主要考查了负指数幂及零指数幂,熟练应用负指数幂和零指数幂的运算法则进行计算是解决本题的关键3、C【分析】根据科学记数法可直接进行求解【详解】解:由题意得:0.0005mm=mm;故选
5、C【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键4、B【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案【详解】a0.520.25,b52,c(5)01,cab故选:B【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键5、C【分析】用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键6、D【分析】先将转化为关于b的整
6、式方程,然后用a、s表示出b即可【详解】解:,s1,故选:D【点睛】本题考查解分式方程,解答的关键是熟练掌握分式方程的一般步骤7、A【分析】根据天数比原来少用5天建立等量关系【详解】设原来平均每天用x瓶消毒液,则原来能用天现在每天用x+4瓶消毒液,则现在能用天,再根据少用5天得到等量关系:故选A【点睛】本题考查分式方程的实际应用,找到等量关系是本题的解题关键8、C【分析】把,的值同时扩大2倍后,运用分式的基本性质进行化简,即可得出结论【详解】解:A选项,把,的值同时扩大2倍后得:,值发生了变化,故该选项不符合题意;B选项,把,的值同时扩大2倍后得:,值缩小了一半,故该选项不符合题意;C选项,把
7、,的值同时扩大2倍后得:,值不变,故该选项符合题意;D选项,把,的值同时扩大2倍后得:,值变成了原来的2倍,故该选项不符合题意;故选:C【点睛】本题考查了分式的基本性质,掌握分式的基本性质是解题的关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变9、C【分析】因为甲、乙、丙为三个连续的正偶数,设乙为x,则甲为,丙为,然后根据已知甲的倒数与丙的倒数的2倍之和等于乙的倒数的3倍列出方程即可【详解】解:甲、乙、丙为三个连续的正偶数,设乙为x,则甲为,丙为,根据题意得:,故选:C【点睛】本题考查了分式方程的应用,读懂题意,找准等量关系是解决本题的关键10、D【分析】绝对值小于1的负数
8、也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:5纳米故选:D【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定二、填空题1、4【分析】分式的值为0的条件是:(1)分子0;(2)分母0两个条件需同时具备,缺一不可据此可以解答本题【详解】解:分式的值为0,且,解得:x4时,分式的值为0,故答案为:4【点睛】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0这两个条件缺一不可2、【分
9、析】首先根据同类项的概念得到,然后求出m和n的值,代入求解即可【详解】解:单项式与是同类项,解得,故答案为:【点睛】此题考查了同类项的概念,负整数指数幂的运算,代数式求值问题,解一元一次方程,解题的关键是根据同类项的概念列出方程求出m和n的值3、a-1【分析】根据零指数幂:a0=1(a0)判断即可【详解】解:根据题意知,a+10解得a-1故答案是:a-1【点睛】本题主要考查了零指数幂,注意:00无意义4、【分析】根据分式的性质,将等式中的分式化为整式,再用,表示即可【详解】,即,故答案为:【点睛】本题考查了分式的性质,等式的性质,掌握分式的性质是解题的关键5、2.36108【分析】绝对值小于1
10、的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0. 00000002362.36108故答案为:2.36108【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定三、解答题1、(1);(2)【分析】(1)根据加减消元法解二元一次方程组即可;(2)先左右两边同时乘以最简公分母,将分式方程转化为整式方程,进而求解即可,最后检验【详解】(1)2+,得:;解得,将代入,解得原方程组的解为(2)2解
11、得经检验是原方程的解【点睛】本题考查了加减消元法解二元一次方程组,解分式方程,掌握解方程(组)的方法是解题的关键2、,【分析】原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值;【详解】解:原式=,=,=,=,当时,原式=【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键3、(1);(2)【分析】(1)直接利用度分秒换算法则计算得出答案;(2)直接利用同底数幂的乘除运算法则计算得出答案【详解】解:(1)原式(2)原式【点睛】此题主要考查了同底数幂的乘除运算、度分秒换算,正确掌握相关运算法则是解题关键4、(1)5;(2)4a+1【分析】(1)根据负指数幂和零次幂的运算法则进行计算即可得出答案;(2)根据完全平方公式及单项式乘以多项式法则进行计算,再合并同类项即可得出答案【详解】解:(1)原式;(2)原式【点睛】此题考查了负指数幂和零次幂的运算法则以及整式的乘法,涉及了完全平方公式的应用,熟练掌握相关基础知识是解题的关键5、(1)0;(2)1【分析】(1)分别利用有理数的乘方及负整数指数幂的乘方法则进行计算即可;(2)分别利用积的乘方的运算法则及平方差公式进行计算,再合并同类项即可【详解】解:(1);(2)【点睛】本题考查了有理数的混合运算及整式的混合运算,熟练掌握相关运算法则并能灵活运用其求解是解题的关键
限制150内