精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解综合练习试题(含答案及详细解析).docx
《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解综合练习试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解综合练习试题(含答案及详细解析).docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第四章因式分解综合练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式中从左到右的变形,是因式分解的是( )A.B.C.D.2、的值为( )A.B.C.D.3533、若多项式能因式分解为,则k的值是( )A.12B.12C.D.64、多项式的因式为( )A.B.C.D.以上都是5、下列等式中,从左往右的变形为因式分解的是()A.a2a1a(a1)B.(ab)(a+b)a2b2C.m2m1m(m1)1D.m(ab)+n(ba)(mn)(ab)6、下列各式从左到右的变形
2、,因式分解正确的是()A.x2+4(x+2)2B.x210x+16(x4)2C.x3xx(x21)D.2xy+6y22y(x+3y)7、若,则的值为( )A.2B.3C.4D.68、下列关于2300+(2)301的计算结果正确的是()A.2300+(2)301230023012300223002300B.2300+(2)3012300230121C.2300+(2)301(2)300+(2)301(2)601D.2300+(2)3012300+230126019、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a2
3、5a6(a6)(a1)10、下列式子的变形是因式分解的是( )A.B.C.D.11、下列各式中,正确的因式分解是( )A.B.C.D.12、如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:213(1)3,263313,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.926213、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.514、把多项式x2+ax+b分解因式,得(x+3)(x4),则a,b的值分别是()A.a1,b12B.a1,b12C.a
4、1,b12D.a1,b1215、下列各式从左到右的变形是因式分解为( )A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、分解因式:2x3+12x2y+18xy2_2、因式分解a39a_3、若,则的值是_4、已知实数a和b适合a2b2a2b214ab,则ab_5、分解因式:x27xy18y2_6、分解因式:9a2+b2_7、分解因式:_8、因式分解:2a2-4a-6=_9、若实数a、b满足:a+b6,ab10,则2a22b2_10、若mn3,mn7,则m2nmn2_三、解答题(3小题,每小题5分,共计15分)1、计算:(1)(2a)33a5a2;(2)(x2y2xy+y2)(4
5、xy)因式分解:(3)x36x2+9x;(4)a2(xy)9(xy)2、分解因式:3、把因式分解-参考答案-一、单选题1、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.,单项式不能因式分解,故此选项不符合题意;B.,是因式分解,故此选项符合题意;C.,是整式计算,故此选项不符合题意;D.,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.2、D【分
6、析】观察式子中有4次方与4的和,将因式分解,再根据因式分解的结果代入式子即可求解【详解】原式故答案为:【点睛】本题考查了因式分解的应用,找到是解题的关键.3、A【分析】根据完全平方公式先确定a,再确定k即可.【详解】解:解:因为多项式能因式分解为,所以a=6.当a=6时,k=12;当a=-6时,k =-12.故选:A.【点睛】本题考查了完全平方式.掌握完全平方公式的特点,是解决本题的关键.本题易错,易漏掉k=-12.4、D【分析】将先提公因式因式分解,然后运用平方差公式因式分解即可.【详解】解:,、,均为的因式,故选:D.【点睛】本题考查了提公因式法因式分解以及运用平方差公式因式分解,熟练运用
7、公式法因式分解是解本题的关键.5、D【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必
8、须为整式,各因式之间不有加减号是解题关键.6、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10x+16(x-4)2,因式分解错误,故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+3y),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.7、C【分析】把变形为,代入a+b=2后,再变形为2(a+
9、b)即可求得最后结果.【详解】解:a+b=2,a2-b2+4b=(a-b)(a+b)+4b,=2(a-b)+4b,=2a-2b+4b,=2(a+b),=22,=4.故选:C.【点睛】本题考查了代数式求值的方法,同时还利用了整体思想.8、A【分析】直接利用积的乘方运算法则将原式变形,再利用提取公因式法分解因式计算得出答案.【详解】2300+(2)301230023012300223002300.故选:A.【点睛】此题主要考查了提取公因式法分解因式以及有理数的混合运算,正确将原式变形是解题关键.9、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 解析 2021 2022 学年 浙教版 初中 数学 年级 下册 第四 因式分解 综合 练习 试题 答案 详细
链接地址:https://www.taowenge.com/p-28195263.html
限制150内