精品试卷沪科版九年级数学下册第24章圆章节测评试题(含答案解析).docx
《精品试卷沪科版九年级数学下册第24章圆章节测评试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品试卷沪科版九年级数学下册第24章圆章节测评试题(含答案解析).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,以边上一点为圆心作,恰与边,分别相切于点,则阴影部分的面积为( )ABCD2、如图图案中,不是中
2、心对称图形的是( )ABCD3、下列判断正确的个数有( )直径是圆中最大的弦;长度相等的两条弧一定是等弧;半径相等的两个圆是等圆;弧分优弧和劣弧;同一条弦所对的两条弧一定是等弧A1个B2个C3个D4个4、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()A1cmB2cmC2cmD4cm5、下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD6、的边经过圆心,与圆相切于点,若,则的大小等于( )ABCD7、如图,ABCD是正方形,CDE绕点C逆时针方向旋转90后能与CBF重合,那么CEF是()A.等腰三角形B等边三角形C.直角三角形D.等腰直角三角形8、下列四个图案
3、中,是中心对称图形但不是轴对称图形的是( )ABCD9、如图,ABC内接于O,BAC30,BC6,则O的直径等于()A10B6C6D1210、将一把直尺、一个含60角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )A6BC3D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、AB是的直径,点C在上,点P在线段OB上运动设,则x的取值范围是_2、如图,在O中,弦ABOC于E点,C在圆上,AB8,CE2,则O的半径AO_3、如图,已知正方形ABCD的边长为6,E为CD边上一点,
4、将绕点A旋转至,连接,若,则的长等于_4、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为若,则的大小为_(度)5、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是_ 三、解答题(5小题,每小题10分,共计50分)1、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F(1)如图,当点P在线段AB上运动时,若DBE30,PB2,求DE的长;(2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出证明2、
5、请阅读下列材料,并完成相应的任务:阿基米德是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子阿拉伯Al-Binmi (973-1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Binmi详本出版了俄文版阿基米德全集第一题就是阿基米德折弦定理阿基米德折弦定理:如图1,和是的两条弦(即折线是圆的一条折弦), 是的中点,则从向所作垂线的垂足是折弦的中点,即下面是运用“截长法”证明的部分证明过程证明:如图2,在上截取,连接和是的中点,任务:(1)请按照上面的证明思路,写出该证明部分;(2)填空:如图3,已知等边内接于,为上一点,于点,则的周长是_3、在正方形AB
6、CD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H(1)当直线l在如图的位置时请直接写出与之间的数量关系_请直接写出线段BH,EH,CH之间的数量关系_(2)当直线l在如图的位置时,请写出线段BH,EH,CH之间的数量关系并证明;(3)已知,在直线l旋转过程中当时,请直接写出EH的长4、问题:如图,是的直径,点在内,请仅用无刻度的直尺,作出中边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程作法:如图,延长交于点,延长交于点;分别连接,并延长相交于点;连接并延长交于点所以线段即为中边上的高(1)根据小芸的作法,补全图形;(
7、2)完成下面的证明证明:是的直径,点,在上,_(_)(填推理的依据),_是的两条高线,所在直线交于点,直线也是的高所在直线是中边上的高5、如图,将一个直径AB等于12厘米的半圆绕着点A逆时针旋转60后,点B落到了点C的位置,半圆扫过部分的图形如阴影部分所示(1)阴影部分的周长;(2)阴影部分的面积(结果保留)-参考答案-一、单选题1、A【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30,利用在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,
8、以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90-B=60,OCD=OCA=30,在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,OD=OA=1,DC=AC=,DOC=360-OAC-ACD-ODC=360-90-90-60=120,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键2、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180,如果
9、旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念中心对称图形是要寻找对称中心,旋转180后重合3、B【详解】直径是圆中最大的弦;故正确,同圆或等圆中长度相等的两条弧一定是等弧;故不正确半径相等的两个圆是等圆;故正确弧分优弧、劣弧和半圆,故不正确同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则不正确综上所述,正
10、确的有故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键4、D【分析】根据圆内接正六边形的性质可得AOB是正三角形,由面积公式可求出半径【详解】解:如图,由圆内接正六边形的性质可得AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OAsinOAB=, 圆O的内接正六边形的面积为(cm2), AOB的面积为(cm2), 即, , 解得r=4, 故选:D【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键5、B【分析】根据“把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“
11、如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键6、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案【详解】解:连接, ,与圆相切于点,故选:A【点睛】本题考查的是切线的性质、圆
12、周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键7、D【分析】根据旋转的性质推出相等的边CECF,旋转角推出ECF90,即可得到CEF为等腰直角三角形【详解】解:CDE绕点C逆时针方向旋转90后能与CBF重合,ECF90,CECF,CEF是等腰直角三角形,故选:D【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键8、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 试卷 沪科版 九年级 数学 下册 24 章节 测评 试题 答案 解析
限制150内