精品试题北师大版九年级数学下册第二章二次函数定向攻克试题(含答案解析).docx
《精品试题北师大版九年级数学下册第二章二次函数定向攻克试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品试题北师大版九年级数学下册第二章二次函数定向攻克试题(含答案解析).docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第二章二次函数定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xQy中,点,在抛物线上当时,下列说法一定正确的是( )A若,则B若,则C若,则D若,则2、下列
2、关于二次函数y2x2的说法正确的是()A它的图象经过点(1,2)B当x0时,y随x的增大而减小C它的图象的对称轴是直线x2D当x0时,y有最大值为03、已知二次函数,当时,总有,有如下几个结论:当时,;当时,c的最大值为0;当时,y可以取到的最大值为7上述结论中,所有正确结论的序号是( )ABCD4、已知点P1(x1,y1),P2(x2,y2)为抛物线yax2+4ax+c(a0)上两点,且x1x2,则下列说法正确的是()A若x1+x24,则y1y2B若x1+x24,则y1y2C若a(x1+x24)0,则y1y2D若a(x1+x24)0,则y1y25、如图,线段AB5,动点P以每秒1个单位长度的
3、速度从点A出发,沿线段AB运动至点B,以点A为圆心,线段AP长为半径作圆设点P的运动时间为t,点P,B之间的距离为y,A的面积为S,则y与t,S与t满足的函数关系分别是( )A正比例函数关系,一次函数关系B一次函数关系,正比例函数关系C一次函数关系, 二次函数关系D正比例函数关系,二次函数关系6、已知抛物线yax2bxc(a0),且abc1,abc3判断下列结论:抛物线与x轴负半轴必有一个交点;b1;abc0; 2a2bc0;当0x2时,y最大3a,其中正确结论的个数( )A2B3C4D57、二次函数的图象如图所示,则方程的根是( )ABCD8、某服装店购进单价为15元的童装若干件,销售一段时
4、间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为( )A21元B22元C23元D24元9、二次函数y2(x2)24的最小值为( )A2B2C4D410、已知二次函数yax2bxc(a0)的图像如图所示,有下列5个结论:c0;abc0;abc0;2a3b0;c4b0,你认为其中正确信息的个数有( )A2个B3个C4个D5个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、写出一个开口向下,且对称轴在轴左侧的抛物线的表达式:_2、二次函数的图像有最_点(填“高”或“低”)3、二次函数
5、,自变量x与函数y的对应值如表:x0123y500512则当时,y满足的范围是_4、将二次函数y2x2的图象沿y轴向上平移2个单位长度所得图象的解析式为 _5、抛物线yax24ax+3a2(a0)恒过定点,则定点的坐标为 _三、解答题(5小题,每小题10分,共计50分)1、近年来我国无人机设备发展迅猛,新型号无人机不断面世,科研单位为保障无人机设备能安全投产,现针对某种型号的无人机的降落情况进行测试,该型号无人机在跑道起点处着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间满足二次函数关系,其部分函数图象如图所示(1)求y关于x的函数关系式;(2)若跑道长度为900(m),是否够此无人
6、机安全着陆?请说明理由;(3)现对该无人机使用减速伞进行短距离着陆实验,要求无人机触地同时打开减速伞(开伞时间忽略不计),若减速伞的制动效果为开伞后每秒钟减少滑行距离20a(单位:m),无人机必须在200(单位:m)的短距跑道降落,请直接写出a的取值范围为 2、已知二次函数yx22mx+2m21(m为常数)(1)若该函数图像与x轴只有一个公共点,求m的值;(2)将该函数图像沿过其顶点且平行于x轴的直线翻折,得到新函数图像新函数的表达式为_,并证明新函数图像始终经过一个定点;已知点A(2,1)、B(2,1),若新函数图像与线段AB只有一个公共点,请直接写出m的取值范围3、如图,已知抛物线经过点,
7、交轴于另一点,其顶点为(1)求抛物线的解析式;(2)为轴上一点,若与相似,直接写出点的坐标4、某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨2元,就会少售出20件玩具(1)不妨设该种品牌玩具的销售单价为x元(x40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件) 销售玩具获得利润w(元) (2)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于400件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?5、
8、一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)506070销售量y(千克)1009080(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?-参考答案-一、单选题1、A【分析】根据点到对称轴的距离判断y3y1y2,再结合题目一一判断即可【详解】解:二次函数(a0)的图象过点,抛物线开口向上,对称轴为直线x=,点,与直线x=1的距离从大到小依次为、,
9、y3y1y2,若y1y20,则y30,选项A符合题意,若,则或y10,选项B不符合题意,若,则,选项C不符合题意,若,则或y20,选项D不符合题意,故选:A【点睛】本题考查了二次函数的性质,二次函数图象上的点的坐标特征,得到y3y1y2是解题的关键2、B【分析】 是一条开口向上的抛物线,对称轴为轴即直线,在对称轴处取最小值为,在对称轴左侧随的增大而减小【详解】A将代入求得,表述错误,故不符合题意;B根据函数的性质,当时,随的增大而减小,表述正确,故符合题意;C图像的对称轴是直线,表述错误,故不符合题意;D当时,取最小值,表述错误,故不符合题意;故选B【点睛】本题考查了二次函数的性质解题的关键在
10、于对二次函数知识的全面掌握3、B【分析】当时,根据不等式的性质求解即可证明;当时,二次函数的对称轴为:,分三种情况讨论:当时;当时;当时;分别利用二次函数的的最值问题讨论证明即可得;当,时,分别求出相应的y的值,然后将时,y的值变形为:,将各个不等式代入即可得证【详解】解:当时, ,即,正确;当时,二次函数的对称轴为:,当时,即时,函数在处取得最小值,即,函数在处取得最大值,即,二者矛盾,这种情况不存在;当时,即时,函数在处取得最小值,即,当时,即时,时,;时,不符合题意,舍去;当时,即时,时,;时,不符合题意,舍去;,当时,即时,函数在处取得最小值,即,函数在处取得最大值,即,二者矛盾,这种
11、情况不存在;综上可得:;故错误;当时,且;当时,且;当时,且;当时,当时,y可以取到的最大值为7;正确;故选:B【点睛】题目主要考查二次函数的基本性质及不等式的性质,熟练掌握不等式的性质是解题关键4、C【分析】先求出抛物线的对称轴为,然后结合二次函数的开口方向,判断二次函数的增减性,即可得到答案【详解】解:抛物线yax2+4ax+c,抛物线的对称轴为:,当点P1(x1,y1),P2(x2,y2)恰好关于对称时,有,即,x1x2,;抛物线的开口方向没有确定,则需要对a进行讨论,故排除A、B;当时,抛物线yax2+4ax+c的开口向下,此时距离越远,y值越小;a(x1+x24)0,点P2(x2,y
12、2)距离直线较远,;当时,抛物线yax2+4ax+c的开口向上,此时距离越远,y值越大;a(x1+x24)0,点P1(x1,y1)距离直线较远,;故C符合题意;D不符合题意;故选:C【点睛】本题考查了二次函数的性质,二次函数的对称性,解题的关键是熟练掌握二次函数的性质进行分析5、C【分析】根据题意分别列出y与t,S与t的函数关系,进而进行判断即可【详解】解:根据题意得,即,是一次函数;A的面积为,即,是二次函数故选C【点睛】本题考查了列函数表达式,一次函数与二次函数的识别,根据题意列出函数表达式是解题的关键6、B【分析】根据已知的式子求出b,c,再根据二次函数的图象性质判断即可;【详解】abc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 试题 北师大 九年级 数学 下册 第二 二次 函数 定向 攻克 答案 解析
限制150内