《精品试题沪科版九年级数学下册第24章圆综合训练试卷(精选含详解).docx》由会员分享,可在线阅读,更多相关《精品试题沪科版九年级数学下册第24章圆综合训练试卷(精选含详解).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是( )ABCD2、下列各曲线
2、是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD3、点P(3,2)关于原点O的对称点的坐标是()A(3,2)B(3,2)C(3,2)D(2,3)4、的边经过圆心,与圆相切于点,若,则的大小等于( )ABCD5、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P的坐标是()ABC或D(2,0)或(5,0)6、如图,CD是的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点(2)作直线GH交AB于点E(3)在直线GH上截取(4)以点F为圆心,AF
3、长为半径画圆交CD于点P则下列说法错误的是( ) ABCD7、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD8、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是( )AB1C2D9、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )A它们的开口方向相同B它们的对称轴相同C它们的变化情況相同D它们的顶点坐标相同10、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为(
4、)A3B4C5D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,一次函数y2x4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45,交x轴于点C,则直线BC的函数表达式为_2、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x25x+60的根,则直线l与圆O的的位置关系是_3、已知如图,AB=8,AC=4,BAC=60,BC所在圆的圆心是点O,BOC=60,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为_4、如图,AB为O的弦,AOB=90,AB=a,则OA=_,O点到AB的距离=_5、如图,在矩形中
5、,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:当时,;点E到边的距离为m;直线一定经过点;的最小值为其中结论正确的是_(填序号即可)三、解答题(5小题,每小题10分,共计50分)1、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分(1)请把图、图补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;(2)把图补成只是中心对称图形,并把中心标上字母P2、如图,AB为O的直径,点C在O上,点P在BA的延长线上,连接BC
6、,PC若AB = 6,的长为,BC = PC求证:直线PC与O相切3、如图,AB是O的一条弦,E是AB的中点,过点E作ECOA于点C,过点B作O的切线交CE的延长线于点D (1)求证:DB=DE;(2)若AB=12,BD=5,求AC长4、在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N),特别地,若图形M,N有公共点,规定d(M,N)0已知:如图,点A(,0),B(0,)(1)如果O的半径为2,那么d(A,O) ,d(B,O) (2)如果O的半径为r,且d(O,线段AB)=0,求r的取值范围;(3)如果C(
7、m,0)是x轴上的动点,C的半径为1,使d(C,线段AB)1,直接写出m的取值范围5、如图,在ABC中,C90,点O为边BC上一点以O为圆心,OC为半径的O与边AB相切于点D(1)尺规作图:画出O,并标出点D(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD,若CDBD,且AC6求劣弧的长-参考答案-一、单选题1、C【分析】如图,过点C作CTAB于点T,过点O作OHAB于点H,交O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论【详解】解:如图,过点C作 CTAB 于点T,过点O作OHAB于点H,交O于点K,连接AO、AK,由题意可得AB垂直平分线段OK,A
8、O=AK,OH=HK=3,OA=OK,OA=OK=AK,OAK=AOK=60,AH=OAsin60=6=3,OHAB,AH=BH,AB=2AH=6,OC+OHCT,CT6+3=9,CT的最大值为9,ABC的面积的最大值为=27,故选:C.【点睛】本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型2、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是
9、考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键3、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,横纵坐标都变成相反数”解答【详解】解:点P(3,2)关于原点O的对称点P的坐标是(3,2)故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键4、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案【详解】解:连接, ,与圆相切于点,故选:A【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键5、C【分析】由
10、题意根据函数解析式求得A(-4,0),B(0-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,根据相似三角形的性质即可得到结论【详解】解:直线交x轴于点A,交y轴于点B,令x=0,得y=-3,令y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,ADP=AOB=90,PAD=BAO,APDABO,AP= ,OP= 或OP= ,P或P,故选:C【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用
11、数形结合思维分析是解题的关键6、C【分析】连接AF、BF,由作法可知,FE垂直平分AB,再根据可得AFE=45,进而得出AFB90,根据等腰直角三角形和圆周角定理可判断哪个结论正确【详解】解:连接AF、BF,由作法可知,FE垂直平分AB,故A正确;CD是的高,故B正确;,故C错误;,AFE=45,同理可得BFE=45,AFB90,故D正确;故选:C【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明7、B【详解】解:A是轴对称图形,不是中心对称图形,故不符合题意;B既是轴对称图形,又是中心对称图形,故符合题意;C不是轴对称图形,是
12、中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合8、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对
13、应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=5=2.5,MG=CG=,HN=,故选A【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的
14、关键,也是本题的难点9、B【分析】根据旋转的性质及抛物线的性质即可确定答案【详解】抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,2),所以在四个选项中,只有B选项符合题意故选:B【点睛】本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键10、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键二、填空题1、
15、#【分析】先求出点A、B的坐标,过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案【详解】解:一次函数y2x4的图像与x轴、y轴分别交于点A、B两点,令,则;令,则,点A为(2,0),点B为(0,4),;过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,如图,ABF是等腰直角三角形,AF=AB,ABOFAE(AAS),AO=FE,BO=AE,点F的坐标为(,);设直线BC为,则,解得:,直线BC的函数表达式为;故答案为:;【点睛】本题考查了一次函数的性质,全等三角形的判
16、定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题2、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若dr,则直线与圆相交;若dr,则直线于圆相切;若dr,则直线与圆相离,从而得出答案【分析】解:x25x+60,(x2)(x3)0,解得:x12,x23,圆的半径是方程x25x+60的根,即圆的半径为2或3,当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交故答案为:相切或相交【点睛】本题考查的是直线与圆的位置关系,
17、因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定3、12【分析】如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题【详解】解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,当MN的值最小时,PEF的值最小,AP=AM=AN,BAM=BAP,CAP=CAN,BAC=60,MAN=120,M
18、N=AM=PA,当PA的值最小时,MN的值最小,取AB的中点J,连接CJAB=8,AC=4,AJ=JB=AC=4,JAC=60,JAC是等边三角形,JC=JA=JB,ACB=90,BC=,BOC=60,OB=OC,OBC是等边三角形,OB=OC=BC=4,BCO=60,ACH=30,AHOH,AH=AC=2,CH=AH=2,OH=6,OA=4,当点P在直线OA上时,PA的值最小,最小值为-,MN的最小值为(-)=-12故答案:-12【点睛】本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题4、 【分析】过O作OC垂直于弦AB
19、,利用垂径定理得到C为AB的中点,然后由OA=OB,且AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由C为AB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OA及AC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离【详解】解:过O作OCAB,则有C为AB的中点,OA=OB,AOB=90,AB=a,根据勾股定理得: OA2+OB2=AB,OA=,在RtAOC中,OA=,AC=AB=,根据勾股定理得:OC=故答案为:;【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂
20、径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题5、【分析】当在点的右边时,得出即可判断;证明出即可判断;根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判断;当时,有最小值,计算即可【详解】解:,为等腰直角三角形,当在点的左边时,当在点的右边时,故错误;过点作,在和中,根据旋转的性质得:,故正确;由中得知为等腰直角三角形,也是等腰直角三角形,过点,不管P在上怎么运动,得到都是等腰直角三角形,即直线一定经过点,故正确;是等腰直角三角形,当时,有最小值,为等腰直角三角形,由勾股定理:,故正确;故答案是:【点睛】本题是四边形综合题,考查了矩形的性质
21、,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理三、解答题1、(1)见解析(2)见解析【分析】(1)根据轴对称图形,中心对称图形的性质画出图形即可(2)根据中心对称图形的定义画出图形即可(1)解:图形如图所示(2)解:图形如图所示,点P即为所求作【点睛】本题考查利用旋转变换设计图案,正方形的性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题2、见详解【分析】连接OC,由题意易得AOC=60,则有B=OCB=30,然后可得P=B=30,进而可得OCP=90,最后问题可求证【详解】证明:连接OC,如图所示:的长为
22、,AB=6,OC=OA=3,OB=OC,B=OCB=30,BC=PC,P=B=30,POC+P=90,即OCP=90,OC是圆O的半径,直线PC与O相切【点睛】本题主要考查切线的判定定理,熟练掌握切线的判定定理是解题的关键3、(1)见解析;(2)【分析】(1)由切线性质及等量代换推出4=5,再利用等角对等边可得出结论;(2)由已知条件得出sinDEF和sinAOE的值,利用对应角的三角函数值相等推出结论.【详解】(1)如图,DCOA, 1+3=90, BD为切线,OBBD, 2+5=90, OA=OB, 1=2,3=4,4=5,在DEB中,4=5,DE=DB.(2)如图,作DFAB于F,连接O
23、E,DB=DE, EF=BE=3,在RtDEF中,EF=3,DE=BD=5,DF=sinDEF= , AOE,,AOE=DEF, 在RtAOE中,sinAOE= , AE=6, AO=.【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.4、(1)0,;(2);(3)【分析】(1)根据新定义,即可求解;(2)过点O作ODAB于点D,根据三角形的面积,可得,再由d(O,线段AB)=0,可得当O的半径等于OD时最小,当O的半径等于OB时最大,即可求解;(3)过点C作CNAB于点N ,利用锐角三角函数,可得OAB=60,然后分三种情况
24、:当点C在点A的右侧时,当点C与点A重合时,当点C在点A的左侧时,即可求解【详解】解:(1)O的半径为2,A(,0),B(0,),点A在O上,点B在O外,d(A,O),d(B,O);(2)过点O作ODAB于点D,点A(,0),B(0,) , , , ,d(O,线段AB)=0,当O的半径等于OD时最小,当O的半径等于OB时最大,r的取值范围是,(3)如图,过点C作CNAB于点N ,点A(,0),B(0,) , ,OAB=60,C(m,0),当点C在点A的右侧时, , , ,d(C,线段AB)1,C的半径为1, ,解得: ,当点C与点A重合时, ,此时d(C,线段AB)=0,当点C在点A的左侧时,
25、 , , ,解得: ,【点睛】本题主要考查了点与圆的位置关系,点与直线的位置关系,理解新定义,熟练掌握点与圆的位置关系,点与直线的位置关系是解题的关键5、(1)作图见解析;(2)【分析】(1)由于D点为O的切点,即可得到OC=OD,且ODAB,则可确定O点在A的角平分线上,所以应先画出A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;(2)连接CD和OD,根据切线长定理,以及圆的基本性质,求出DCB的度数,然后进一步求出COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可【详解】解:(1)如图所示,先作A的角平分线,交BC于O点,以O为圆心,OC为半径画出O即为所求;(2)如图所示,连接CD和OD,由题意,AD为O的切线,OCAC,且OC为半径,AC为O的切线,AC=AD,ACD=ADC,CD=BD,B=DCB,ADC=B+BCD,ACD=ADC=2DCB,ACB=90,ACD+DCB=90,即:3DCB=90,DCB=30,OC=OD,DCB=ODC=30,COD=180-230=120,DCB=B=30,在RtABC中,BAC=60,AO平分BAC,CAO=DAO=30,在RtACO中,【点睛】本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键
限制150内