精品试卷北师大版九年级数学下册第一章直角三角形的边角关系重点解析试题(含解析).docx
《精品试卷北师大版九年级数学下册第一章直角三角形的边角关系重点解析试题(含解析).docx》由会员分享,可在线阅读,更多相关《精品试卷北师大版九年级数学下册第一章直角三角形的边角关系重点解析试题(含解析).docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、九年级数学下册第一章直角三角形的边角关系重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,的顶点都是正方形网格中的格点,则( )ABCD2、图是第七届国际数学教育大会(ICME)会徽,在其主体
2、图案中选择两个相邻的直角三角形,恰好能组合得到如图所示的四边形若,则的值为( )ABCD3、一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米AB3CD以上的答案都不对4、如图,在中,点D为AB边的中点,连接CD,若,则的值为( )ABCD5、如图,等腰RtABC中,C90,AC5,D是AC上一点,若tanDBA,则AD()A1B2CD26、已知,在矩形中,于,设,且,则的长为( )ABCD7、在直角ABC中,AC2,则tanA的值为( )ABCD8、如图,滑雪场有一坡角为20的滑道,滑雪道的长AC为100米,则BC的长为()米AB100cos20CD10
3、0sin209、如图,点为边上的任意一点,作于点,于点,下列用线段比表示的值,正确的是( )ABCD10、在RtABC中,C90,AC4,BC3,则下列选项正确的是()AsinABcosACcosBDtanB第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,小明家附近有一观光塔CD,他发现当光线角度变化时,观光塔的影子在地面上的长度也发生变化经测量发现,当小明站在点A处时,塔顶D的仰角为37,他往前再走5米到达点B(点A,B,C在同一直线上),塔顶D的仰角为53,则观光塔CD的高度约为 _.(精确到0.1米,参考数值:tan37,tan53)2、如图,ABC中,BD
4、AB,BD、AC相交于点D,ADAC,AB2,ABC150,则DBC的面积是_3、如图,在正方形中,点为边中点,连接,与对角线交于点,连接,且与交于点,连接,则下列结论:;其中正确的是_(填序号即可)4、计算:_5、如图,在平面直角坐标系中,有一个,ABO90,AOB30,直角边OB在y轴正半轴上,点A在第一象限,且OA1,将绕原点逆时针旋转30,同时把各边长扩大为原来的两倍(即OA12OA)得到,同理,将绕原点O逆时针旋转30,同时把各边长扩大为原来的两倍,得到,依此规律,得到,则的长度为_三、解答题(5小题,每小题10分,共计50分)1、图1、图2分别是某型号拉杆箱的实物图与示意图,小张获
5、得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF30cm,CE:CD1:3,DCF45,CDF30,请根据以上信息,解决下列问题(1)求AC的长度:(2)直接写出拉杆端点A到水平滑杆ED所在直线的距离 cm2、6tan230sin602tan453、如图,在中,(1)在线段上求作一点D,使得;(用尺规作图,不写作法,但应保留作图痕迹)(2)若,利用上述作图,求的值4、如图,在平面直角坐标系xOy中,正方形ABCD的边AB在x轴的正半轴上,顶点C,D在第一象限内,正比例函数y13x的图象经过点D,反比例函数的图象经过点D,且与边BC交于点E,连接OE,
6、已知AB3(1)点D的坐标是 ;(2)求tanEOB的值;(3)观察图象,请直接写出满足y23的x的取值范围;(4)连接DE,在x轴上取一点P,使,过点P作PQ垂直x轴,交双曲线于点Q,请直接写出线段PQ的长5、先化简,再求代数式()的值,其中atan60+2sin45-参考答案-一、单选题1、D【分析】根据题意和图形,可以得到AC、BC和AB的长,然后根据等面积法可以求得CD的长,从而可以得到的值【详解】解:作CDAB,交AB于点D,由图可得,AC,BC2,AB,解得,CD,sinBAC,故选:D【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答2、A【分析】在中
7、,可得的长度,在中,代入即可得出答案【详解】解:,在中,在中,.故选:A【点睛】本题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法进行计算是解决本题的关键.3、B【分析】根据坡度即可求得坡角的正弦值,根据三角函数即可求解;【详解】坡比在实际问题中的应用解:坡度为1:7,设坡角是,则sin=,上升的高度是:30米故选B【点睛】本题主要考查了解直角三角形的应用,准确分析计算是解题的关键4、D【分析】根据直角三角形斜边中线等于斜边一半求出AB,再根据三角函数的意义,可求出答案【详解】解:在ABC中,ACB90,点D为AB边的中点,ADBDCDAB,,又CD3,AB6,故选:D【点睛】本题考
8、查直角三角形的性质和三角函数,理解直角三角形的边角关系是得出正确答案的前提5、B【分析】过点D作,根据已知正切的定义得到,再根据等腰直角三角形的性质得到,再根据勾股定理计算即可;【详解】过点D作,tanDBA,是等腰直角三角形,AC5,在等腰直角中,由勾股定理得故选B【点睛】本题主要考查了解直角三角形,等腰直角三角形,勾股定理,准确计算是解题的关键6、B【分析】根据同角的余角相等求出ADE=ACD,再根据两直线平行,内错角相等可得BAC=ACD,然后求出AC,再利用勾股定理求出BC,然后根据矩形的对边相等可得AD=BC【详解】解:DEAC,ADE+CAD=90,ACD+CAD=90,ACD=A
9、DE=,矩形ABCD的对边ABCD,BAC=ACD,cos=,AC=4=,由勾股定理得,BC=,四边形ABCD是矩形,AD=BC=故选:B【点睛】本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC是解题的关键7、B【分析】先利用勾股定理求出BC的长,然后再求tanA的值【详解】解:在RtABC中,AB=3,AC2,BC= tanA=故选:B【点睛】本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中8、B【分析】首先根据坡角的概念得到,然后由的余弦值可得,代入AC的值求解即可【详解】解:滑道坡角为20,AC为100米
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 试卷 北师大 九年级 数学 下册 第一章 直角三角形 边角 关系 重点 解析 试题
限制150内