精品试题北师大版九年级数学下册第二章二次函数专项攻克练习题(无超纲).docx
《精品试题北师大版九年级数学下册第二章二次函数专项攻克练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《精品试题北师大版九年级数学下册第二章二次函数专项攻克练习题(无超纲).docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第二章二次函数专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若点A(1,y1),B(2,y2),C(m,y3)在抛物线y=(a0)上,且y1y2y3,则m的值不可能是()A
2、5B3C3D52、正方形的面积y与它的周长x满足的函数关系是( )A正比例函数B一次函数C二次函数D反比例函数3、在同一平面直角坐标系xOy中,一次函数y2x与二次函数的图象可能是()ABCD4、已知二次函数的图象如图所示,关于a,c的符号判断正确的是( )Aa0,c0Ba0,c0Ca0,c0Da0,c05、抛物线的对称轴为直线( )ABCD6、在平面直角坐标系xOy中,抛物线向上平移2个单位长度得到的抛物线为( )ABCD7、若点在二次函数的图象上,则下列各点中,一定在二次函数图象上的是( )ABCD8、下列关于二次函数的说法正确的是( )A当时,随着的增大而增大B当时,有最小值为2C该函数
3、图象与轴有两个交点D该函数图象可由抛物线向左平移6个单位,再向上平移2个单位得到9、如图,抛物线与x轴交于点,对称轴为直线结合图象分析下列结论:;一元二次方程的两根分别为,;若为方程的两个根,则且其中正确的结论有( )个A2B3C4D510、把函数的图象向右平移2个单位,再向下平移1个单位,得到的图象解析式为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、抛物线yax24ax+3a2(a0)恒过定点,则定点的坐标为 _2、飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s60t1.5t2,飞机着陆后滑行 _米才能停下来3、将抛物
4、线y2x2向右平移2个单位,再向上平移1个单位,所得的抛物线的解析式为 _4、如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,抛物线y2x2+mx+m2经过B、C两点,若OA2OC,则矩形OABC的周长为 _5、已知二次函数(n为常数),若该函数图像与x轴只有一个公共点,则_三、解答题(5小题,每小题10分,共计50分)1、疫情从未远去,据云南省卫健委通报,连续天,云南省的本土日新增确诊病例均超过例,从月日到月日,短短一周时间,本轮疫情中的本土确诊病例累计已达例,为了抗击“新冠”疫情后期输入,我省的医疗物资供给正常,某药店销售每瓶进价为元的消毒液,市场调查发现,每
5、天的销售量瓶与每瓶的售价元之间满足如图所示的函数关系(1)求与之间的函数关系式;(2)政府部门规定每瓶消毒液售价不得超过元,当每瓶的销售单价定为多少元时,药店可获得最大利润?最大利润是多少?2、如图,抛物线yax2+bx+c(a0)与直线ykx(k0)相交于点M(1,1),N(3,3),且这条抛物线的对称轴为x1(1)若将该抛物线平移使得其经过原点,且对称轴不变,求平移后的抛物线的表达式及k的值(2)设P为直线ykx下方的抛物线上一点,求PMN面积的最大值及此时P点的坐标3、已知,如图所示,直线l经过点A(4,0)和B(0,4),它与抛物线yax2在第一象限内交于点P,又AOP的面积为(1)求
6、直线AB的表达式;(2)求a的值4、已知抛物线yax2+bx+3交y轴于点A,交x轴于点B(3,0)和点C(1,0),顶点为点M(1)请求出抛物线的解析式和顶点M的坐标;(2)如图1,点E为x轴上一动点,若AME的周长最小,请求出点E的坐标;(3)点F为直线AB上一个动点,点P为抛物线上一个动点,若BFP为等腰直角三角形,请直接写出点P的坐标5、已知:抛物线:交x轴于点AB(点A在点B的左侧),交y轴于点C,抛物线经过点A,与x轴的另一个交点为,交y轴于点(1)求抛物线的函数表达式;(2)如图,N为抛物线上一动点,过点N作直线轴,交抛物线于点M,点N自点A运动至点B的过程中,求线段MN长度的最
7、大值(3)P为抛物线的对称轴上一动点Q为抛物线上一动点,是否存在P、Q两点,使得B、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出P、Q的坐标,若不存在,请说明理由-参考答案-一、单选题1、C【分析】根据二次函数的解析式可得出二次函数的对称轴为x=-1,分两种情况讨论,根据图象上点的坐标特征,得到关于m的不等式,解不等式即可得出结论【详解】解:抛物线y=的对称轴为x=-1,点A(1,y1),B(2,y2),C(m,y3)在抛物线y=上,且y1y2y3,当a0,在对称轴的右侧y随x的增大而减小,点A、B都在对称轴右侧,而y1y2,所以这种情况不存在;当a0,则|m+1|(2+1)=3,解
8、得m-4或m2,m的值不可能是-3故选:C【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是根据二次函数的性质找出关于m的一元一次不等式本题属于基础题,难度不大,解决该题型题目时,根据二次函数的性质结合二次函数的对称轴找出不等式是关键2、C【分析】由周长,先求出正方形的边长,然后结合面积公式,即可得到答案【详解】解:正方形的周长为x,正方形的边长为,正方形的面积;故选:C【点睛】本题考查了函数表达式,解题的关键是掌握正方形的面积和周长公式3、C【分析】先由一次函数的性质判断,然后结合二次函数中a0时,a0时,分别进行判断,即可得到答案【详解】解:一次函数y2x,一次函数的图像经过原点,
9、且y随x的增大而增大,故排除A、B选项;在二次函数中,当a0时,开口向上,且抛物线顶点在y的负半轴上,当a0时,开口向下,且抛物线顶点在y的负半轴上,D不符合题意,C符合题意;故选:C【点睛】此题主要考查了二次函数与一次函数图象,利用二次函数的图象和一次函数的图象的特点求解4、B【分析】根据开口方向可得的符号,根据对称轴在轴的哪侧可得的符号,根据抛物线与轴的交点可得的符号【详解】解:抛物线开口向上,抛物线的对称轴在轴的左侧,抛物线与轴交于负半轴,故选:B【点睛】考查二次函数图象与系数的关系,解题的关键是掌握抛物线的开口向上,;对称轴在轴左侧,同号;抛物线与轴的交点即为的值5、A【分析】先把抛物
10、线化为顶点式的形式,再进行解答即可【详解】解:抛物线y=x2+4x-8可化为y=(x+2)2-12,抛物线的对称轴是直线x=-2故选:A【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键二次函数的顶点式为,则抛物线的对称轴为直线,顶点坐标为(,) 6、D【分析】抛物线的平移规律:左加右减,上加下减,利用平移规律直接可得答案.【详解】解:抛物线向上平移2个单位长度得到的抛物线为 故选D【点睛】本题考查的是抛物线的平移,掌握“抛物线的上下平移规律”是解本题的关键.7、A【分析】先把点A代入解析式得出,函数化为,然后把各点中的x的值代入解析式求函数值,看函数值是否等于各点的纵坐
11、标即可【详解】解:点在二次函数的图象上,当x=-4时,故选项A在二次函数图象上;当x=-2时,故选项B不在二次函数图象上;当x=0时,故选项C不在二次函数图像上;当x=2时,故选项D不在二次函数图象上故选A【点睛】本题考查二次函数图象上点的特征,求函数值,掌握二次函数图象上点的特征是解题关键8、B【分析】根据二次函数的性质,增减性质可判断A,函数最值可判断B,函数图像的位置可判断C,利用平移的方向可判断D【详解】解:二次函数抛物线开口向上,当时,抛物线y随x增大而增大,故选项A不正确;当时,有最小值为2,故选项B正确;函数图像都在x轴上方,与x轴没有交点,故选项C不正确;该函数图象可由抛物线向
12、右平移6个单位,再向上平移2个单位得到,故选项D不正确故选B【点睛】本题考查二次函数的性质,掌握二次函数的性质,以及平移法则上加下减,左加右减是解题关键9、C【分析】根据二次函数图象的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系,逐项判断即可【详解】解:抛物线开口向下,因此a0,对称轴为x=10,因此a、b异号,所以b0,抛物线与y轴交点在正半轴,因此c0,所以abc0,故正确;当x=2时,y=4a+2b+c0,故正确;抛物线与x轴交点(3,0),对称轴为x=1因此另一个交点坐标为(-1,0),所以a-b+c=0,又x=-=1,有2a+b=0,所以3a+c=0,而a0,c
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 试题 北师大 九年级 数学 下册 第二 二次 函数 专项 攻克 练习题 无超纲
限制150内